An externally generated resonant magnetic perturbation can induce complex non-ideal MHD responses in their resonant surfaces.We have studied the plasma responses using Fitzpatrick's improved two-fluid model and pr...An externally generated resonant magnetic perturbation can induce complex non-ideal MHD responses in their resonant surfaces.We have studied the plasma responses using Fitzpatrick's improved two-fluid model and program LAYER.We calculated the error field penetration threshold for J-TEXT.In addition,we find that the island width increases slightly as the error field amplitude increases when the error field amplitude is below the critical penetration value.However,the island width suddenly jumps to a large value because the shielding effect of the plasma against the error field disappears after the penetration.By scanning the natural mode frequency,we find that the shielding effect of the plasma decreases as the natural mode frequency decreases.Finally,we obtain the m/n=2/1 penetration threshold scaling on density and temperature.展开更多
Colormetric method of images by using two different wavelength images is a new measuring method for welding temperature field on the basis of ordinary colorimetric method, which depends little on the measuring distanc...Colormetric method of images by using two different wavelength images is a new measuring method for welding temperature field on the basis of ordinary colorimetric method, which depends little on the measuring distance, emissivity of body etc. In this paper the real time measuring system and measuring principle of welding temperature field are described, the whole welding temperature field is real time measured, so the temperature distribution at the welding direction and its cross section is obtained, then parameters of thermal cycle. With data from the temperature closed loop control system of the parameters of temperature field is developed and tested. Experimental results prove that it has high measurement speed (time of a field within 0.5 s ) and good dynamic response quality. Weld penetration can be controlled satisfactorily under the variation of welding condition such as welding thickness, welding speed and weldment gap etc.展开更多
The error field penetration is numerically studied in the frame of the visco-resistive magnetohydrodynamics(MHD) model.A transition scaling is obtained to link the Rutherford and Waelbroeck regimes in the nonlinear ...The error field penetration is numerically studied in the frame of the visco-resistive magnetohydrodynamics(MHD) model.A transition scaling is obtained to link the Rutherford and Waelbroeck regimes in the nonlinear phase of error field penetration process.Furthermore,a transition density scaling of[br/BT]critne1/2 obtained in accord with recent experimental observations in the J-TEXT tokamak.展开更多
Field penetration index(FPI) is one of the representative key parameters to examine the tunnel boring machine(TBM) performance.Lack of accurate FPI prediction can be responsible for numerous disastrous incidents assoc...Field penetration index(FPI) is one of the representative key parameters to examine the tunnel boring machine(TBM) performance.Lack of accurate FPI prediction can be responsible for numerous disastrous incidents associated with rock mechanics and engineering.This study aims to predict TBM performance(i.e.FPI) by an efficient and improved adaptive neuro-fuzzy inference system(ANFIS) model.This was done using an evolutionary algorithm,i.e.artificial bee colony(ABC) algorithm mixed with the ANFIS model.The role of ABC algorithm in this system is to find the optimum membership functions(MFs) of ANFIS model to achieve a higher degree of accuracy.The procedure and modeling were conducted on a tunnelling database comprising of more than 150 data samples where brittleness index(BI),fracture spacing,α angle between the plane of weakness and the TBM driven direction,and field single cutter load were assigned as model inputs to approximate FPI values.According to the results obtained by performance indices,the proposed ANFISABC model was able to receive the highest accuracy level in predicting FPI values compared with ANFIS model.In terms of coefficient of determination(R^(2)),the values of 0.951 and 0.901 were obtained for training and testing stages of the proposed ANFISABC model,respectively,which confirm its power and capability in solving TBM performance problem.The proposed model can be used in the other areas of rock mechanics and underground space technologies with similar conditions.展开更多
Using over eight years of Mars Atmosphere and Volatile Evolutio N(MAVEN)data,from November 2014 to May 2023,we have investigated the Martian nightside ionospheric magnetic field distribution under the influence of ups...Using over eight years of Mars Atmosphere and Volatile Evolutio N(MAVEN)data,from November 2014 to May 2023,we have investigated the Martian nightside ionospheric magnetic field distribution under the influence of upstream solar wind drivers,including the interplanetary magnetic field intensity(∣BIMF∣),solar wind dynamic pressure(PS W),solar extreme ultraviolet flux(EUV),and Martian seasons(L s).Our analysis reveals pronounced correlations between magnetic field residuals and both∣BIMF∣and PS W.Correlations observed with EUV flux and Ls were weaker—notably,magnetic field residuals increased during periods of high EUV flux and at Mars perihelion.We find that the IMF penetrates to an altitude of 200 km under a wide range of upstream conditions,penetrating notably deeper under high∣BIMF∣andPSWconditions.Our analysis also indicates that EUV flux and IMF cone angle have minimal impact on IMF penetration depth.Those findings provide useful constraints on the dynamic nature of Martian atmospheric escape processes and their evolution,suggesting that historical solar wind conditions may have facilitated deeper IMF penetration and higher rates of ionospheric escape than are observed now.Moreover,by establishing criteria for magnetic‘quiet’conditions,this study offers new insights into the planet’s magnetic environment under varying solar wind influences,knowledge that should help refine models of the Martian crustal magnetic field.展开更多
In this study, the effect of extreme laser fields on the α decay process of ground-state even–even nuclei was investigated.Using the deformed Gamow-like model, we found that state-of-the-art lasers can cause a sligh...In this study, the effect of extreme laser fields on the α decay process of ground-state even–even nuclei was investigated.Using the deformed Gamow-like model, we found that state-of-the-art lasers can cause a slight change in the α decay penetration probability of most nuclei. In addition, we studied the correlation between the rate of change of the α decay penetration probability and angle between the directions of the laser electric field and α particle emission for different nuclei. Based on this correlation, the average effect of extreme laser fields on the half-life of many nuclei with arbitrary α particle emission angles was calculated. The calculations show that the laser suppression and promotion effects on the α decay penetration probability of the nuclei population with completely random α particle-emission directions are not completely canceled.The remainder led to a change in the average penetration probability of the nuclei. Furthermore, the possibility of achieving a higher average rate of change by altering the spatial shape of the laser is explored. We conclude that circularly polarized lasers may be helpful in future experiments to achieve a more significant average rate of change of the α decay half-life of the nuclei population.展开更多
The trajectory of the compact torus(CT)within a tokamak discharge is crucial to fueling.In this study,we developed a penetration model with a vacuum magnetic field region to accurately determine CT trajectories in tok...The trajectory of the compact torus(CT)within a tokamak discharge is crucial to fueling.In this study,we developed a penetration model with a vacuum magnetic field region to accurately determine CT trajectories in tokamak discharges.This model was used to calculate the trajectory and penetration parameters of CT injections by applying both perpendicular and tangential injection schemes in both HL-2A and ITER tokamaks.For perpendicular injection along the tokamak's major radius direction from the outboard,CTs with the same injection parameters exhibited a 0.08 reduction in relative penetration depth when injected into HL-2A and a 0.13reduction when injected into ITER geometry when considering the vacuum magnetic field region compared with cases where this region was not considered.In addition,we proposed an optimization method for determining the CT's initial injection velocity to accurately calculate the initial injection velocity of CTs for central fueling in tokamaks.Furthermore,this paper discusses schemes for the tangential injection of CT into tokamak discharges.The optimal injection angle and CT magnetic moment direction for injection into both HL-2A and ITER were determined through numerical simulations.Finally,the kinetic energy loss occurring when the CT penetrated the vacuum magnetic field region in ITER was reduced byΔEk=975.08 J by optimizing the injection angle for the CT injected into ITER.These results provide valuable insights for optimizing injection angles in fusion experiments.Our model closely represents actual experimental scenarios and can assist the design of CT parameters.展开更多
The RF electric field penetration and the power deposition into planar-type inductively coupled plasmas in low-pressure discharges have been studied by means of a self-consistent model which consists of Maxwell equati...The RF electric field penetration and the power deposition into planar-type inductively coupled plasmas in low-pressure discharges have been studied by means of a self-consistent model which consists of Maxwell equations combined with the kinetic equation of electrons. The Maxwell equations are solved based on the expansion of the Fourier-Bessel series for determining the RF electric field. Numerical results show the influence of a non-Maxwellian electron energy distribution on the RF electric field penetration and the power deposition for different coil currents. Moreover, the two-dimensional spatial profiles of RF electric field and power density are also shown for different numbers of RF coil turns.展开更多
The influence of a magnetic field on the stability of a shaped charge jet is experimentally investigated at standoffs of 490,650 and 800 mm.The experimental results without and with the magnetic field are compared in ...The influence of a magnetic field on the stability of a shaped charge jet is experimentally investigated at standoffs of 490,650 and 800 mm.The experimental results without and with the magnetic field are compared in terms of the shaped charge jet form,stability and penetration ability.A theoretical model based on one-dimension fluid dynamics is then developed to assess the depth of penetration of the shaped charge at those three standoffs and magnetic conditions.The results show that the penetration capability can be enhanced in more than 70%by the magnetic field.The theoretical calculations are compared with the experimental results with reasonably good correlation.In addition,the parameters introduced in the theory are discussed together with the experiments at three standoffs studied.展开更多
This paper conducts laboratory tests to investigate detailedly the soil deformation law around the pipeline and its penetration depth under self-gravity. The seabed model is prepared by consolidating saturated soil us...This paper conducts laboratory tests to investigate detailedly the soil deformation law around the pipeline and its penetration depth under self-gravity. The seabed model is prepared by consolidating saturated soil using vacuum pressure technology, and the pipeline models are specifically designed to possess different radii. Based on the experimental results and digital images, the soil deformation process is analyzed and summarized, a kinematic admissible velocity field is given and an upper bound solution of pipeline penetration depth and soil reaction force is derived and proposed in this paper. In order to verify the accuracy of the upper bound solution deduced in this paper,a comparison is made among some published results and the solution suggested in this paper, the comparison results confirm that the upper bound solution and the soil failure mode are reasonable. Finally two empirical formulas are given in this paper to estimate the soil reaction force of seabed and the penetration depth of pipeline. The empirical formulas are in agreement with the upper bound solution derived in this paper, and the conclusion of this paper could provide some theoretical reference for the further study of the interaction between the pipeline and the soil.展开更多
Herein,we report bifunctional molybdenum-doped nickel sulfide on nickel foam(Mo-NiS_(x)/NF)for magnetic field-enhanced overall water splitting under alkaline conditions.Proper doping of Mo can lead to optimization of ...Herein,we report bifunctional molybdenum-doped nickel sulfide on nickel foam(Mo-NiS_(x)/NF)for magnetic field-enhanced overall water splitting under alkaline conditions.Proper doping of Mo can lead to optimization of the electronic structure of NiS_(x),which accelerates the dissociation of H2O and the adsorption of OH−in the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)processes,respectively.In addition,the magnetically active Mo-NiS_(x)/NF can further enhance the HER and OER activity under an applied magnetic field due to the magnetoresistance effect and the ferromagnetic(FM)exchange-field penetration effect.As a result,Mo-NiS_(x)/NF requires low overpotentials of 307 mV at 50mA cm^(−2)(for OER)and 136 mV at 10mA cm^(−2)(for HER)under a magnetic field of 10000 G.Furthermore,the electrolytic cell constructed by the bifunctional Mo-NiS_(x)/NFs as both the cathode and the anode shows a low cell voltage of 1.594 V at 10 mA cm^(−2)with optimal stability over 60 h under the magnetic field.Simultaneous enhancement of the HER and OER processes by an external magnetic field through rational design of electrocatalysts might be promising for overall water splitting applications.展开更多
The spectrum effect on the penetration of resonant magnetic perturbation(RMP) is studied with upgraded in-vessel RMP coils on J-TEXT.The poloidal spectrum of the RMP field,especially the amplitudes of 2/1 and 3/1 comp...The spectrum effect on the penetration of resonant magnetic perturbation(RMP) is studied with upgraded in-vessel RMP coils on J-TEXT.The poloidal spectrum of the RMP field,especially the amplitudes of 2/1 and 3/1 components,can be varied by the phase difference between the upper and lower coil rows,ΔΦ=Φ_(top)-Φ_(bottom),where Φ_(top)and Φ_(bottom)are the toroidal phases of the n=1 field of each coil row.The type of RMP penetration is found to be related to ΔΦ,including the RMP penetration of either 2/1 or 3/1 RMP and the successive penetrations of 3/1 RMP followed by the 2/1 RMP.For cases with penetration of only one RMP component,the penetration thresholds measured by the corresponding resonant component are close for variousΔΦ.However,the 2/1 RMP penetration threshold is significantly reduced if the 3/1 locked island is formed in advance.The changes in the rotation profile due to 3/1 locked island formation could partially contribute to the reduction of the 2/1 thresholds.展开更多
This paper is concerned with the properties of propagation fax-field patterns corresponding to the scattering of time harmonic acoustic waves by a bounded penetrable obstacle in an ocean waveguide. The sets of solutio...This paper is concerned with the properties of propagation fax-field patterns corresponding to the scattering of time harmonic acoustic waves by a bounded penetrable obstacle in an ocean waveguide. The sets of solutions to the transmission problem are constructed such that the restriction of these solutions to the boundary of the penetrable obstacle is dense in a Hilbert space. Then conditions under which a set of propagation far-field patterns is complete in a Hilbert space are determined. These properties are important in investigating inverse transmission problems in an ocean waveguide.展开更多
Dealing with both elemental and high-Tc superconductors (SCs) - Sn, Nb and Pb belonging to the former category, and MgB2 and different samples of YBCO to the latter - we show that the difference in the values of their...Dealing with both elemental and high-Tc superconductors (SCs) - Sn, Nb and Pb belonging to the former category, and MgB2 and different samples of YBCO to the latter - we show that the difference in the values of their critical magnetic field Hc1,c2 and the penetration depth λL(0) is, remarkably, attributable predominantly to the difference in the values of a single parameter, viz., the chemical potential (μ) close to their critical temperatures (Tcs). Based directly on the dynamics of pairing in a magnetic field and the corresponding number equation, our approach relates Hc1,c2 of an SC with the following set of its properties: S1 = {μ, Tc, Debye temperature, effective mass of the electron, magnetic interaction parameter, Landau index}. Hence, it provides an alternative to the approach followed by Talantsev [Mod. Phys. Lett. B 33, 1950195 (2019)] who has shown by ingeniously combining the results of various well-established theories that Hc2 of an SC can be calculated via four different equations, each of which invokes two or more properties from its sample-specific set S2 = {Tc, gap, coherence length, λL(0), jump in sp. ht.}, which is radically different from S1.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.51821005)。
文摘An externally generated resonant magnetic perturbation can induce complex non-ideal MHD responses in their resonant surfaces.We have studied the plasma responses using Fitzpatrick's improved two-fluid model and program LAYER.We calculated the error field penetration threshold for J-TEXT.In addition,we find that the island width increases slightly as the error field amplitude increases when the error field amplitude is below the critical penetration value.However,the island width suddenly jumps to a large value because the shielding effect of the plasma against the error field disappears after the penetration.By scanning the natural mode frequency,we find that the shielding effect of the plasma decreases as the natural mode frequency decreases.Finally,we obtain the m/n=2/1 penetration threshold scaling on density and temperature.
文摘Colormetric method of images by using two different wavelength images is a new measuring method for welding temperature field on the basis of ordinary colorimetric method, which depends little on the measuring distance, emissivity of body etc. In this paper the real time measuring system and measuring principle of welding temperature field are described, the whole welding temperature field is real time measured, so the temperature distribution at the welding direction and its cross section is obtained, then parameters of thermal cycle. With data from the temperature closed loop control system of the parameters of temperature field is developed and tested. Experimental results prove that it has high measurement speed (time of a field within 0.5 s ) and good dynamic response quality. Weld penetration can be controlled satisfactorily under the variation of welding condition such as welding thickness, welding speed and weldment gap etc.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2014GB124001 and 2013GB102000)National Natural Science Foundation of China(Nos.11322549,11275043 and 11275080)
文摘The error field penetration is numerically studied in the frame of the visco-resistive magnetohydrodynamics(MHD) model.A transition scaling is obtained to link the Rutherford and Waelbroeck regimes in the nonlinear phase of error field penetration process.Furthermore,a transition density scaling of[br/BT]critne1/2 obtained in accord with recent experimental observations in the J-TEXT tokamak.
基金supported by the Faculty Development Competitive Research Grant program of Nazarbayev University(Grant No.021220FD5151)。
文摘Field penetration index(FPI) is one of the representative key parameters to examine the tunnel boring machine(TBM) performance.Lack of accurate FPI prediction can be responsible for numerous disastrous incidents associated with rock mechanics and engineering.This study aims to predict TBM performance(i.e.FPI) by an efficient and improved adaptive neuro-fuzzy inference system(ANFIS) model.This was done using an evolutionary algorithm,i.e.artificial bee colony(ABC) algorithm mixed with the ANFIS model.The role of ABC algorithm in this system is to find the optimum membership functions(MFs) of ANFIS model to achieve a higher degree of accuracy.The procedure and modeling were conducted on a tunnelling database comprising of more than 150 data samples where brittleness index(BI),fracture spacing,α angle between the plane of weakness and the TBM driven direction,and field single cutter load were assigned as model inputs to approximate FPI values.According to the results obtained by performance indices,the proposed ANFISABC model was able to receive the highest accuracy level in predicting FPI values compared with ANFIS model.In terms of coefficient of determination(R^(2)),the values of 0.951 and 0.901 were obtained for training and testing stages of the proposed ANFISABC model,respectively,which confirm its power and capability in solving TBM performance problem.The proposed model can be used in the other areas of rock mechanics and underground space technologies with similar conditions.
基金supported by the National Natural Science Foundation of China(Grant No.42304186)China Postdoctoral Science Foundation(2023M743466)+3 种基金the Key Research Program of Chinese Academy of Sciences(Grant No.ZDBS-SSW-TLC00103)the Key Research Program of the Institute of Geology&Geophysics,CAS(Grant No.s IGGCAS-201904,IGGCAS-202102)supported by the International Space Science Institute(ISSI)in Bern and Beijing,through ISSI/ISSI-BJ International Team project“Understanding the Mars Space Environment through Multi-Spacecraft Measurements”(ISSI Team project#23–582ISSIBJ Team project#58).
文摘Using over eight years of Mars Atmosphere and Volatile Evolutio N(MAVEN)data,from November 2014 to May 2023,we have investigated the Martian nightside ionospheric magnetic field distribution under the influence of upstream solar wind drivers,including the interplanetary magnetic field intensity(∣BIMF∣),solar wind dynamic pressure(PS W),solar extreme ultraviolet flux(EUV),and Martian seasons(L s).Our analysis reveals pronounced correlations between magnetic field residuals and both∣BIMF∣and PS W.Correlations observed with EUV flux and Ls were weaker—notably,magnetic field residuals increased during periods of high EUV flux and at Mars perihelion.We find that the IMF penetrates to an altitude of 200 km under a wide range of upstream conditions,penetrating notably deeper under high∣BIMF∣andPSWconditions.Our analysis also indicates that EUV flux and IMF cone angle have minimal impact on IMF penetration depth.Those findings provide useful constraints on the dynamic nature of Martian atmospheric escape processes and their evolution,suggesting that historical solar wind conditions may have facilitated deeper IMF penetration and higher rates of ionospheric escape than are observed now.Moreover,by establishing criteria for magnetic‘quiet’conditions,this study offers new insights into the planet’s magnetic environment under varying solar wind influences,knowledge that should help refine models of the Martian crustal magnetic field.
基金This work was supported by the National Nature Science Foundation of China(Nos.12375244,12135009)the Science and Technology Innovation Program of Hunan Province(No.2020RC4020)+1 种基金the Hunan Provincial Innovation Foundation for Postgraduate(No.CX20210007)Natural Science Research Project of Yichang City(No.A23-2-028).
文摘In this study, the effect of extreme laser fields on the α decay process of ground-state even–even nuclei was investigated.Using the deformed Gamow-like model, we found that state-of-the-art lasers can cause a slight change in the α decay penetration probability of most nuclei. In addition, we studied the correlation between the rate of change of the α decay penetration probability and angle between the directions of the laser electric field and α particle emission for different nuclei. Based on this correlation, the average effect of extreme laser fields on the half-life of many nuclei with arbitrary α particle emission angles was calculated. The calculations show that the laser suppression and promotion effects on the α decay penetration probability of the nuclei population with completely random α particle-emission directions are not completely canceled.The remainder led to a change in the average penetration probability of the nuclei. Furthermore, the possibility of achieving a higher average rate of change by altering the spatial shape of the laser is explored. We conclude that circularly polarized lasers may be helpful in future experiments to achieve a more significant average rate of change of the α decay half-life of the nuclei population.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2022YFE03100004 and 2022YFE03060003)National Natural Science Foundation of China(Nos.12375226,12175227 and 11875255)the China Postdoctoral Science Foundation(No.2022M723066).
文摘The trajectory of the compact torus(CT)within a tokamak discharge is crucial to fueling.In this study,we developed a penetration model with a vacuum magnetic field region to accurately determine CT trajectories in tokamak discharges.This model was used to calculate the trajectory and penetration parameters of CT injections by applying both perpendicular and tangential injection schemes in both HL-2A and ITER tokamaks.For perpendicular injection along the tokamak's major radius direction from the outboard,CTs with the same injection parameters exhibited a 0.08 reduction in relative penetration depth when injected into HL-2A and a 0.13reduction when injected into ITER geometry when considering the vacuum magnetic field region compared with cases where this region was not considered.In addition,we proposed an optimization method for determining the CT's initial injection velocity to accurately calculate the initial injection velocity of CTs for central fueling in tokamaks.Furthermore,this paper discusses schemes for the tangential injection of CT into tokamak discharges.The optimal injection angle and CT magnetic moment direction for injection into both HL-2A and ITER were determined through numerical simulations.Finally,the kinetic energy loss occurring when the CT penetrated the vacuum magnetic field region in ITER was reduced byΔEk=975.08 J by optimizing the injection angle for the CT injected into ITER.These results provide valuable insights for optimizing injection angles in fusion experiments.Our model closely represents actual experimental scenarios and can assist the design of CT parameters.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10376003 and 10572035).
文摘The RF electric field penetration and the power deposition into planar-type inductively coupled plasmas in low-pressure discharges have been studied by means of a self-consistent model which consists of Maxwell equations combined with the kinetic equation of electrons. The Maxwell equations are solved based on the expansion of the Fourier-Bessel series for determining the RF electric field. Numerical results show the influence of a non-Maxwellian electron energy distribution on the RF electric field penetration and the power deposition for different coil currents. Moreover, the two-dimensional spatial profiles of RF electric field and power density are also shown for different numbers of RF coil turns.
基金National Natural Science Foundation of China(Grant No.11972196)Youth fund of Jiangsu Natural Science Foundation(Grant Nos.BK20190433)National Natural Science Funds for Distinguished Young Scholar of China(Grant No.11702144)to provide fund for conducting experiments.
文摘The influence of a magnetic field on the stability of a shaped charge jet is experimentally investigated at standoffs of 490,650 and 800 mm.The experimental results without and with the magnetic field are compared in terms of the shaped charge jet form,stability and penetration ability.A theoretical model based on one-dimension fluid dynamics is then developed to assess the depth of penetration of the shaped charge at those three standoffs and magnetic conditions.The results show that the penetration capability can be enhanced in more than 70%by the magnetic field.The theoretical calculations are compared with the experimental results with reasonably good correlation.In addition,the parameters introduced in the theory are discussed together with the experiments at three standoffs studied.
基金financially supported by the National Natural Science Foundation of China(Grant No.51679224)
文摘This paper conducts laboratory tests to investigate detailedly the soil deformation law around the pipeline and its penetration depth under self-gravity. The seabed model is prepared by consolidating saturated soil using vacuum pressure technology, and the pipeline models are specifically designed to possess different radii. Based on the experimental results and digital images, the soil deformation process is analyzed and summarized, a kinematic admissible velocity field is given and an upper bound solution of pipeline penetration depth and soil reaction force is derived and proposed in this paper. In order to verify the accuracy of the upper bound solution deduced in this paper,a comparison is made among some published results and the solution suggested in this paper, the comparison results confirm that the upper bound solution and the soil failure mode are reasonable. Finally two empirical formulas are given in this paper to estimate the soil reaction force of seabed and the penetration depth of pipeline. The empirical formulas are in agreement with the upper bound solution derived in this paper, and the conclusion of this paper could provide some theoretical reference for the further study of the interaction between the pipeline and the soil.
基金National Natural Science Foundation of China,Grant/Award Numbers:21871065,22071038Heilongjiang Touyan Team,Grant/Award Number:HITTY‐20190033Interdisciplinary Research Foundation of HIT,Grant/Award Number:IR2021205。
文摘Herein,we report bifunctional molybdenum-doped nickel sulfide on nickel foam(Mo-NiS_(x)/NF)for magnetic field-enhanced overall water splitting under alkaline conditions.Proper doping of Mo can lead to optimization of the electronic structure of NiS_(x),which accelerates the dissociation of H2O and the adsorption of OH−in the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)processes,respectively.In addition,the magnetically active Mo-NiS_(x)/NF can further enhance the HER and OER activity under an applied magnetic field due to the magnetoresistance effect and the ferromagnetic(FM)exchange-field penetration effect.As a result,Mo-NiS_(x)/NF requires low overpotentials of 307 mV at 50mA cm^(−2)(for OER)and 136 mV at 10mA cm^(−2)(for HER)under a magnetic field of 10000 G.Furthermore,the electrolytic cell constructed by the bifunctional Mo-NiS_(x)/NFs as both the cathode and the anode shows a low cell voltage of 1.594 V at 10 mA cm^(−2)with optimal stability over 60 h under the magnetic field.Simultaneous enhancement of the HER and OER processes by an external magnetic field through rational design of electrocatalysts might be promising for overall water splitting applications.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(Nos.2019YFE03010004,2018YFE0309100)the National Key R&D Program of China(No.2017YFE0301100)National Natural Science Foundation of China(Nos.11905078,12075096 and 51821005)
文摘The spectrum effect on the penetration of resonant magnetic perturbation(RMP) is studied with upgraded in-vessel RMP coils on J-TEXT.The poloidal spectrum of the RMP field,especially the amplitudes of 2/1 and 3/1 components,can be varied by the phase difference between the upper and lower coil rows,ΔΦ=Φ_(top)-Φ_(bottom),where Φ_(top)and Φ_(bottom)are the toroidal phases of the n=1 field of each coil row.The type of RMP penetration is found to be related to ΔΦ,including the RMP penetration of either 2/1 or 3/1 RMP and the successive penetrations of 3/1 RMP followed by the 2/1 RMP.For cases with penetration of only one RMP component,the penetration thresholds measured by the corresponding resonant component are close for variousΔΦ.However,the 2/1 RMP penetration threshold is significantly reduced if the 3/1 locked island is formed in advance.The changes in the rotation profile due to 3/1 locked island formation could partially contribute to the reduction of the 2/1 thresholds.
基金Project supported by the National Natural Science Foundation of China (No.10672128)the Doctor Foundation of Wuhan University of Technology (No.471-38650238)the Undergraduate Innovative Foundation of Wuhan University of Technology (No.A145)
文摘This paper is concerned with the properties of propagation fax-field patterns corresponding to the scattering of time harmonic acoustic waves by a bounded penetrable obstacle in an ocean waveguide. The sets of solutions to the transmission problem are constructed such that the restriction of these solutions to the boundary of the penetrable obstacle is dense in a Hilbert space. Then conditions under which a set of propagation far-field patterns is complete in a Hilbert space are determined. These properties are important in investigating inverse transmission problems in an ocean waveguide.
文摘Dealing with both elemental and high-Tc superconductors (SCs) - Sn, Nb and Pb belonging to the former category, and MgB2 and different samples of YBCO to the latter - we show that the difference in the values of their critical magnetic field Hc1,c2 and the penetration depth λL(0) is, remarkably, attributable predominantly to the difference in the values of a single parameter, viz., the chemical potential (μ) close to their critical temperatures (Tcs). Based directly on the dynamics of pairing in a magnetic field and the corresponding number equation, our approach relates Hc1,c2 of an SC with the following set of its properties: S1 = {μ, Tc, Debye temperature, effective mass of the electron, magnetic interaction parameter, Landau index}. Hence, it provides an alternative to the approach followed by Talantsev [Mod. Phys. Lett. B 33, 1950195 (2019)] who has shown by ingeniously combining the results of various well-established theories that Hc2 of an SC can be calculated via four different equations, each of which invokes two or more properties from its sample-specific set S2 = {Tc, gap, coherence length, λL(0), jump in sp. ht.}, which is radically different from S1.