In this paper, a novel interferometric method with a wide range of sensitivities, called holography quasi projection moire, is proposed. It combines the features of the variated double projection moire method and the ...In this paper, a novel interferometric method with a wide range of sensitivities, called holography quasi projection moire, is proposed. It combines the features of the variated double projection moire method and the holographic interferometry method. This technique is used to study the failure modes of microelectronic packaging modules.展开更多
This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding type...This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding types on communication performance.The study investigates the impact of on-off keying(OOK)and 2-pulse-position modulation(2-PPM)on the bit error rate(BER)in single-channel intensity and polarization multiplexing.Furthermore,it compares the error correction performance of low-density parity check(LDPC)and Reed-Solomon(RS)codes across different error correction coding types.The effects of unscattered photon ratio and depolarization ratio on BER are also verified.Finally,a UWOC system based on SPD is constructed,achieving 14.58 Mbps with polarization OOK multiplexing modulation and 4.37 Mbps with polarization 2-PPM multiplexing modulation using LDPC code error correction.展开更多
In order to further analyze the micro-motion modulation signals generated by rotating components and extract micro-motion features,a modulation signal denoising algorithm based on improved variational mode decompositi...In order to further analyze the micro-motion modulation signals generated by rotating components and extract micro-motion features,a modulation signal denoising algorithm based on improved variational mode decomposition(VMD)is proposed.To improve the time-frequency performance,this method decomposes the data into narrowband signals and analyzes the internal energy and frequency variations within the signal.Genetic algorithms are used to adaptively optimize the mode number and bandwidth control parameters in the process of VMD.This approach aims to obtain the optimal parameter combination and perform mode decomposition on the micro-motion modulation signal.The optimal mode number and quadratic penalty factor for VMD are determined.Based on the optimal values of the mode number and quadratic penalty factor,the original signal is decomposed using VMD,resulting in optimal mode number intrinsic mode function(IMF)components.The effective modes are then reconstructed with the denoised modes,achieving signal denoising.Through experimental data verification,the proposed algorithm demonstrates effective denoising of modulation signals.In simulation data validation,the algorithm achieves the highest signal-to-noise ratio(SNR)and exhibits the best performance.展开更多
A numerical model for steady state analysis and analytical expressions for the AM and FM modulation responses of DFB lasers are presented.The small signal modulation responses of 3 phase shift(PS) DFB is investigate...A numerical model for steady state analysis and analytical expressions for the AM and FM modulation responses of DFB lasers are presented.The small signal modulation responses of 3 phase shift(PS) DFB is investigated for the first time.A new method(Vector Newton method) to obtain multiple longitudinal mode of DFB lasers is used.It is demonstrated that this method is suitable for obtaining multiple solution of high nonlinear equations.Longitudinal photon density distribution and multiple longitudinal mode of 3PS DFB and simple DFB lasers are analyzed.The results show that modulation response characteristics of 3PS DFB laser is as good as that of DFB,and PS can weaken the longitudinal spatial hole burning (LHSB) effect and is in favor of single longitudinal mode operating of lasers.展开更多
The discharge operation regime of pulse modulated atmospheric radio frequency (RF) glow discharge in helium is investigated on the duty cycle and frequency of modulation pulses. The characteristics of radio frequenc...The discharge operation regime of pulse modulated atmospheric radio frequency (RF) glow discharge in helium is investigated on the duty cycle and frequency of modulation pulses. The characteristics of radio frequency discharge burst in terms of breakdown voltage, alpha(s)- gamma(γ) mode transition voltage and current are demonstrated by the discharge current voltage characteristics. The minimum breakdown voltage of RF discharge burst was obtained at the duty cycle of 20% and frequency of 400 kHz, respectively. The α-γ mode transition of RF discharge burst occurs at higher voltage and current by reducing the duty cycle and elevating the modulation frequency before the RF discharge burst evolving into the ignition phase, in which the RF discharge burst can operate stably in the γ mode. It proposes that the intensity and stability of RF discharge burst can be improved by manipulating the duty cycle and modulation frequency in pulse modulated atmospheric RF glow discharge.展开更多
In this paper,a flexible modular“Tetris”microsatellite platform is studied to implement the rapid integration and assembly of microsatellites.The proposed microsatellite platform is fulfilled based on a sandwich ass...In this paper,a flexible modular“Tetris”microsatellite platform is studied to implement the rapid integration and assembly of microsatellites.The proposed microsatellite platform is fulfilled based on a sandwich assembly mode which consists of the isomorphic module structure and the standard mechanical-electric-data-thermal interfaces.The advantages of the sandwich assembly mode include flexible reconfiguration and efficient assembly.The prototype of the sandwich assembly mode is built for verifying the performance and the feasibility of the proposed mechanical-electric-data-thermal interfaces.Finally,an assembly case is accomplished to demonstrate the validity and advantages of the proposed“Tetris”microsatellite platform.展开更多
We report a theoretical work on the properties of modulational instability and bright type nonlinear localized modes in one-dimensional easy-axis weak ferromagnetic spin lattices involving next-nearest-neighbor coupli...We report a theoretical work on the properties of modulational instability and bright type nonlinear localized modes in one-dimensional easy-axis weak ferromagnetic spin lattices involving next-nearest-neighbor couplings.With a linear stability analysis, we calculate the growth rates of the modulational instability, and plot the instability regions.When the strength of the next-nearest-neighbor coupling is large enough, two new asymmetric modulational instability regions appear near the boundary of the first Brillouin zone.Furthermore, analytical forms of the bright nonlinear localized modes are constructed by means of a quasi-discreteness approach.The influence of the next-nearest-neighbor coupling on the Brillouin zone center mode and boundary mode are discussed.In particular, we discover a reversal phenomenon of the propagation direction of the Brillouin zone boundary mode.展开更多
The plasmonic lasers can break down the diffraction limit of conventional optics to the deep subwavelength regime, thus the corresponding lasers have great potential applications in biological sensors, data storage, p...The plasmonic lasers can break down the diffraction limit of conventional optics to the deep subwavelength regime, thus the corresponding lasers have great potential applications in biological sensors, data storage, photolithography and optical communications. However, the mode modulation and ohmic losses are still the major problems that limiting the practical applications of the plasmonic lasers.展开更多
In this work, physical models of neoclassical tearing modes (NTMs) including bootstrap current and multiple modulated electron cyclotron current drive model are applied. Based on the specific physical problems durin...In this work, physical models of neoclassical tearing modes (NTMs) including bootstrap current and multiple modulated electron cyclotron current drive model are applied. Based on the specific physical problems during the suppression of NTMs by driven current, this work compares the efficiency of continuous and modulated driven currents, and simulates the physical processes of multiple modulated driven currents on suppressing rotating magnetic island. It is found that when island rotates along the poloidal direction, the suppression ability of continuous driven current can be massively reduced due to current deposition outside the island separatrix and reverse deposition direction at the X point, which can be avoided by current drive modulation. Multiple current drive has a better suppressing effect than single current drive. This work gives realistic numerical simulations by optimizing the model and parameters based on the experiments, which could provide references for successful suppression of NTMs in future advanced tokamak such as international thermonuclear experimental reactor.展开更多
By adding frequency modulated signals to the intensity equation of gain noise model of the single-mode laser driven by two coloured noises which are correlated, this paper uses the linear approximation method to calcu...By adding frequency modulated signals to the intensity equation of gain noise model of the single-mode laser driven by two coloured noises which are correlated, this paper uses the linear approximation method to calculate the power spectrum and signal-to-noise ratio (SNR) of the laser intensity. The results show that the SNR appears typical stochastic resonance with the variation of intensity of the pump noise and quantum noise. As the amplitude of a modulated signal has effects on the SNR, it shows suppression, monotone increasing, stochastic resonance, and multiple stochastic resonance with the variation of the frequency of a carrier signal and modulated signal.展开更多
This paper presents an optimized asymmetric three corrugation-pitch-modulated DFB laser (3CPM-DFB) with extremely high mode selectivity(△αL= 0.97) and low flatness(F = 0.009), which are two key parameters to indicat...This paper presents an optimized asymmetric three corrugation-pitch-modulated DFB laser (3CPM-DFB) with extremely high mode selectivity(△αL= 0.97) and low flatness(F = 0.009), which are two key parameters to indicate the laser’s single longitudinal mode(SLM) performance. In threshold analysis, the optimization process based on transfer matrix method is demonstrated to maximize △αL?and minimize F simultaneously. In the above-threshold regime, the evolutions of △αL?and?longitudinal distribution of photon density with injection current are evaluated. More importantly, nanoimprint lithography which was proved an efficient way to fabricate DFB gratings can provide completely same simple fabrication procedure for both 3CPM grating and conventional uniform grating. So the big practical value of 3CPM-DFB can be expected because of its advanced performance and easy manufacturability.展开更多
Modulation instabilities in the randomly birefringent two-mode optical fibers (RB-TMFs) are analyzed in detail by accounting the effects of the differential mode group delay (DMGD) and group velocity dispersion (...Modulation instabilities in the randomly birefringent two-mode optical fibers (RB-TMFs) are analyzed in detail by accounting the effects of the differential mode group delay (DMGD) and group velocity dispersion (GVD) ratio between the two modes, both of which are absent in the randomly birefringent single-mode optical fibers (RB-SMFs). New MI characteristics are found in both normal and anomalous dispersion regimes. For the normal dispersion, without DMGD, no MI exists. With DMGD, a completely new MI band is generated as long as the total power is smaller than a critical total power value, named by Per, which increases significantly with the increment of DMGD, and reduces dramatically as GVD ratio and power ratio between the two modes increases. For the anomalous dispersion, there is one MI band without DMGD. In the presence of DMGD, the MI gain is reduced generally. On the other hand, there also exists a critical total power (Per), which increases (decreases) distinctly with the increment of DMGD (GVD ratio of the two modes) but varies complicatedly with the power ratio between the two modes. Two MI bands are present for total power smaller than Per, and the dominant band can be switched between the low and high frequency bands by adjusting the power ratio between the two modes. The M1 analysis in this paper is verified by numerical simulation.展开更多
Frequency-Modulation Continuous-Wave Synthetic Aperture Radar(FMCW SAR)has shown great potential in the applications of civil and military fields because of its easy deployment and low cost.However,most of these work ...Frequency-Modulation Continuous-Wave Synthetic Aperture Radar(FMCW SAR)has shown great potential in the applications of civil and military fields because of its easy deployment and low cost.However,most of these work and analysis are concentrated on airborne FMCW SAR,where the characteristics of the imaging geometry and signal are much similar to that of traditional pulsed-SAR.As a result,a series of test campaigns of automobile-based FMCW SAR were sponsored by Institute of Electronics,Chinese Academy of Sciences(IECAS)in the autumn of 2012.In this paper,we analyze the imaging issues of FMCW SAR in automobile mode(named as near range mode),where a vehicle is used as moving platform and a large looking angle is configured.The imaging geometry and signal properties are analyzed in detail.We emphasize the difference of the near range mode from the traditional airborne SAR mode.Based on the analysis,a focusing approach is proposed in the paper to handle the data focusing in the case.Simulation experiment and real data of automobile FMCW SAR are used to validate the analysis.展开更多
The traditional anomaly (TA) reference frame and its corresponding anomaly for a given data span changes with the extension of data length. In this study, the modulated annual cycle (MAC), instead of the widely us...The traditional anomaly (TA) reference frame and its corresponding anomaly for a given data span changes with the extension of data length. In this study, the modulated annual cycle (MAC), instead of the widely used climatological mean annual cycle, is used as an alternative reference frame for computing climate anomalies to study the multi-timescale variability of surface air temperature (SAT) in China based on homogenized daily data from 1952 to 2004. The Ensemble Empirical Mode Decomposition (EEMD) method is used to separate daily SAT into a high frequency component, a MAC component, an interannual component, and a decadal-to-trend component. The results show that the EEMD method can reflect historical events reasonably well, indicating its adaptive and temporally local characteristics. It is shown that MAC is a temporally local reference frame and will not be altered over a particular time span by an exten-sion of data length, thereby making it easier for physical interpretation. In the MAC reference frame, the low frequency component is found more suitable for studying the interannual to longer timescale variability (ILV) than a 13-month window running mean, which does not exclude the annual cycle. It is also better than other traditional versions (annual or summer or winter mean) of ILV, which contains a portion of the annual cycle. The analysis reveals that the variability of the annual cycle could be as large as the magnitude of interannual variability. The possible physical causes of different timescale variability of SAT in China are further discussed.展开更多
The mode hopping phenomenon induced by optical feedback in single-mode microchip Nd:YAG lasers is presented. With optical feedback, mode hopping strongly depends on two factors: the ratio of external cavity length t...The mode hopping phenomenon induced by optical feedback in single-mode microchip Nd:YAG lasers is presented. With optical feedback, mode hopping strongly depends on two factors: the ratio of external cavity length to intra-cavity length, and initial gains of the two hopping modes, When external cavity length equals an integral multiple of intracavity length, there is almost no mode hopping. However, if the external cavity length does not equal an integral multiple of intra-cavity length, mode hopping occurs. The ratio of external cavity length to intra-cavity length determines the position of two-mode hopping, The initial gains of the two hopping modes determine the corresponding peak values and oscillating periods of them in the intensity modulation curves.展开更多
An environmentally stable, repetition rate tunable, all-polarization-maintaining, Er-doped pulse fiber laser with a single-wall carbon nanotubes saturated absorber is demonstrated. The ring laser cavity includes a del...An environmentally stable, repetition rate tunable, all-polarization-maintaining, Er-doped pulse fiber laser with a single-wall carbon nanotubes saturated absorber is demonstrated. The ring laser cavity includes a delay line enabling a tunable repetition rate to vary from 35.52 MHz to 35.64 MHz with continuous mode-locked operation. The laser output parameters confirm that the tunable mode-locked operations are stable. High environmental stability is also confirmed by the -130 dBc/Hz low phase noise, a 70-dB signal-to-noise ratio of radio frequency signals, a low amplitude fluctuation of 5.76 × 10-4, and a low fluctuation of reoetition rate of 12 Hz. The laser shows a high de^ree of oolarization of 93%.展开更多
Modulation of lower hybrid current drive was used successfully to suppress MHD activity. This was achieved in discharges with MHD m = 2 tearing modes during the discharge conditions Ip = 110 kA, Bt = 1.75 T, ne0 - 1.1...Modulation of lower hybrid current drive was used successfully to suppress MHD activity. This was achieved in discharges with MHD m = 2 tearing modes during the discharge conditions Ip = 110 kA, Bt = 1.75 T, ne0 - 1.1 × 1013 cm-3. The delivering time of LHCD pulse is less then 30 μs. The amplitude, interval and the period of LHCD modulation pulse can be adjusted very conveniently. The modulation LHCD can be delivered very fast at any time during the discharge. The modulation LHCD period was always much shorter than the plasma resistive time (Tη ≈100 ms). So the profile of plasma current is changed much faster than the plasma resistive time. The different forms of LHCD modulating can be proved.展开更多
Under harmonic wave excitation, the dynamic response of a bilinear SDOF system can be expressed by the Hilbert spectrum. The Hilbert spectrum can be formulated by (1) the inter-wave combination mechanism between the s...Under harmonic wave excitation, the dynamic response of a bilinear SDOF system can be expressed by the Hilbert spectrum. The Hilbert spectrum can be formulated by (1) the inter-wave combination mechanism between the steady response and the transient response when the system behaves linearly, or (2) the intra-wave modulation mechanism embedded in one intrinsic mode function (IMF) component when the system behaves nonlinearly. The temporal variation of the instantaneous frequency of the IMF component is consistent with the system nonlinear behavior of yielding and unloading. As a thorough study of this fundamental structural dynamics problem, this article investigates the influence of the amplitude of the harmonic wave excitation on the Hilbert spectrum and the intrinsic oscillatory mode of the dynamic response of a bilinear SDOF system.展开更多
基金The project supported by the National Natural Science Foundation of China
文摘In this paper, a novel interferometric method with a wide range of sensitivities, called holography quasi projection moire, is proposed. It combines the features of the variated double projection moire method and the holographic interferometry method. This technique is used to study the failure modes of microelectronic packaging modules.
基金supported in part by the National Natural Science Foundation of China(Nos.62071441 and 61701464)in part by the Fundamental Research Funds for the Central Universities(No.202151006).
文摘This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding types on communication performance.The study investigates the impact of on-off keying(OOK)and 2-pulse-position modulation(2-PPM)on the bit error rate(BER)in single-channel intensity and polarization multiplexing.Furthermore,it compares the error correction performance of low-density parity check(LDPC)and Reed-Solomon(RS)codes across different error correction coding types.The effects of unscattered photon ratio and depolarization ratio on BER are also verified.Finally,a UWOC system based on SPD is constructed,achieving 14.58 Mbps with polarization OOK multiplexing modulation and 4.37 Mbps with polarization 2-PPM multiplexing modulation using LDPC code error correction.
文摘In order to further analyze the micro-motion modulation signals generated by rotating components and extract micro-motion features,a modulation signal denoising algorithm based on improved variational mode decomposition(VMD)is proposed.To improve the time-frequency performance,this method decomposes the data into narrowband signals and analyzes the internal energy and frequency variations within the signal.Genetic algorithms are used to adaptively optimize the mode number and bandwidth control parameters in the process of VMD.This approach aims to obtain the optimal parameter combination and perform mode decomposition on the micro-motion modulation signal.The optimal mode number and quadratic penalty factor for VMD are determined.Based on the optimal values of the mode number and quadratic penalty factor,the original signal is decomposed using VMD,resulting in optimal mode number intrinsic mode function(IMF)components.The effective modes are then reconstructed with the denoised modes,achieving signal denoising.Through experimental data verification,the proposed algorithm demonstrates effective denoising of modulation signals.In simulation data validation,the algorithm achieves the highest signal-to-noise ratio(SNR)and exhibits the best performance.
文摘A numerical model for steady state analysis and analytical expressions for the AM and FM modulation responses of DFB lasers are presented.The small signal modulation responses of 3 phase shift(PS) DFB is investigated for the first time.A new method(Vector Newton method) to obtain multiple longitudinal mode of DFB lasers is used.It is demonstrated that this method is suitable for obtaining multiple solution of high nonlinear equations.Longitudinal photon density distribution and multiple longitudinal mode of 3PS DFB and simple DFB lasers are analyzed.The results show that modulation response characteristics of 3PS DFB laser is as good as that of DFB,and PS can weaken the longitudinal spatial hole burning (LHSB) effect and is in favor of single longitudinal mode operating of lasers.
基金supported by National Natural Science Foundation of China(Nos.11475043 and 11375042)
文摘The discharge operation regime of pulse modulated atmospheric radio frequency (RF) glow discharge in helium is investigated on the duty cycle and frequency of modulation pulses. The characteristics of radio frequency discharge burst in terms of breakdown voltage, alpha(s)- gamma(γ) mode transition voltage and current are demonstrated by the discharge current voltage characteristics. The minimum breakdown voltage of RF discharge burst was obtained at the duty cycle of 20% and frequency of 400 kHz, respectively. The α-γ mode transition of RF discharge burst occurs at higher voltage and current by reducing the duty cycle and elevating the modulation frequency before the RF discharge burst evolving into the ignition phase, in which the RF discharge burst can operate stably in the γ mode. It proposes that the intensity and stability of RF discharge burst can be improved by manipulating the duty cycle and modulation frequency in pulse modulated atmospheric RF glow discharge.
基金supported by the National Natural Science Foundation of China(6210333962073261)+1 种基金Shaanxi Natural Science Basic Research Program(2023-JC-YB-569)the Fundamental Research Funds for the Central Universities。
文摘In this paper,a flexible modular“Tetris”microsatellite platform is studied to implement the rapid integration and assembly of microsatellites.The proposed microsatellite platform is fulfilled based on a sandwich assembly mode which consists of the isomorphic module structure and the standard mechanical-electric-data-thermal interfaces.The advantages of the sandwich assembly mode include flexible reconfiguration and efficient assembly.The prototype of the sandwich assembly mode is built for verifying the performance and the feasibility of the proposed mechanical-electric-data-thermal interfaces.Finally,an assembly case is accomplished to demonstrate the validity and advantages of the proposed“Tetris”microsatellite platform.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11604121 and 11875126)the Natural Science Fund Project of Hunan Province,China(Grant No.2017JJ3255)+1 种基金the National College Students’ Innovation Entrepreneurship Training Program,China(Grant No.201810531014)the Scientific Research Fund of Hunan Provincial Education Department,China(Grant No.17B212)
文摘We report a theoretical work on the properties of modulational instability and bright type nonlinear localized modes in one-dimensional easy-axis weak ferromagnetic spin lattices involving next-nearest-neighbor couplings.With a linear stability analysis, we calculate the growth rates of the modulational instability, and plot the instability regions.When the strength of the next-nearest-neighbor coupling is large enough, two new asymmetric modulational instability regions appear near the boundary of the first Brillouin zone.Furthermore, analytical forms of the bright nonlinear localized modes are constructed by means of a quasi-discreteness approach.The influence of the next-nearest-neighbor coupling on the Brillouin zone center mode and boundary mode are discussed.In particular, we discover a reversal phenomenon of the propagation direction of the Brillouin zone boundary mode.
文摘The plasmonic lasers can break down the diffraction limit of conventional optics to the deep subwavelength regime, thus the corresponding lasers have great potential applications in biological sensors, data storage, photolithography and optical communications. However, the mode modulation and ohmic losses are still the major problems that limiting the practical applications of the plasmonic lasers.
基金supported by National Natural Science Foundation of China(Grand Nos.11605021,11375039 and 11275034)Natural Science Foundation of Liaoning Province(Grand No.201601074)supported by'the Fundamental Research Funds for the Central Universities'(Grand Nos.3132016128 and 3132014328)
文摘In this work, physical models of neoclassical tearing modes (NTMs) including bootstrap current and multiple modulated electron cyclotron current drive model are applied. Based on the specific physical problems during the suppression of NTMs by driven current, this work compares the efficiency of continuous and modulated driven currents, and simulates the physical processes of multiple modulated driven currents on suppressing rotating magnetic island. It is found that when island rotates along the poloidal direction, the suppression ability of continuous driven current can be massively reduced due to current deposition outside the island separatrix and reverse deposition direction at the X point, which can be avoided by current drive modulation. Multiple current drive has a better suppressing effect than single current drive. This work gives realistic numerical simulations by optimizing the model and parameters based on the experiments, which could provide references for successful suppression of NTMs in future advanced tokamak such as international thermonuclear experimental reactor.
基金supported by the Key Project Scientific Research Foundation from the Education Department of Hubei Province of China(Grant No D200725001)
文摘By adding frequency modulated signals to the intensity equation of gain noise model of the single-mode laser driven by two coloured noises which are correlated, this paper uses the linear approximation method to calculate the power spectrum and signal-to-noise ratio (SNR) of the laser intensity. The results show that the SNR appears typical stochastic resonance with the variation of intensity of the pump noise and quantum noise. As the amplitude of a modulated signal has effects on the SNR, it shows suppression, monotone increasing, stochastic resonance, and multiple stochastic resonance with the variation of the frequency of a carrier signal and modulated signal.
文摘This paper presents an optimized asymmetric three corrugation-pitch-modulated DFB laser (3CPM-DFB) with extremely high mode selectivity(△αL= 0.97) and low flatness(F = 0.009), which are two key parameters to indicate the laser’s single longitudinal mode(SLM) performance. In threshold analysis, the optimization process based on transfer matrix method is demonstrated to maximize △αL?and minimize F simultaneously. In the above-threshold regime, the evolutions of △αL?and?longitudinal distribution of photon density with injection current are evaluated. More importantly, nanoimprint lithography which was proved an efficient way to fabricate DFB gratings can provide completely same simple fabrication procedure for both 3CPM grating and conventional uniform grating. So the big practical value of 3CPM-DFB can be expected because of its advanced performance and easy manufacturability.
基金Project supported by the Natural Science Foundation of Jiangsu Provincial Universities(Grant No.14KJB140009)the National Natural Science Foundation of China(Grant No.11447113)the Startup Foundation for Introducing Talent of NUIST(Grant No.2241131301064)
文摘Modulation instabilities in the randomly birefringent two-mode optical fibers (RB-TMFs) are analyzed in detail by accounting the effects of the differential mode group delay (DMGD) and group velocity dispersion (GVD) ratio between the two modes, both of which are absent in the randomly birefringent single-mode optical fibers (RB-SMFs). New MI characteristics are found in both normal and anomalous dispersion regimes. For the normal dispersion, without DMGD, no MI exists. With DMGD, a completely new MI band is generated as long as the total power is smaller than a critical total power value, named by Per, which increases significantly with the increment of DMGD, and reduces dramatically as GVD ratio and power ratio between the two modes increases. For the anomalous dispersion, there is one MI band without DMGD. In the presence of DMGD, the MI gain is reduced generally. On the other hand, there also exists a critical total power (Per), which increases (decreases) distinctly with the increment of DMGD (GVD ratio of the two modes) but varies complicatedly with the power ratio between the two modes. Two MI bands are present for total power smaller than Per, and the dominant band can be switched between the low and high frequency bands by adjusting the power ratio between the two modes. The M1 analysis in this paper is verified by numerical simulation.
文摘Frequency-Modulation Continuous-Wave Synthetic Aperture Radar(FMCW SAR)has shown great potential in the applications of civil and military fields because of its easy deployment and low cost.However,most of these work and analysis are concentrated on airborne FMCW SAR,where the characteristics of the imaging geometry and signal are much similar to that of traditional pulsed-SAR.As a result,a series of test campaigns of automobile-based FMCW SAR were sponsored by Institute of Electronics,Chinese Academy of Sciences(IECAS)in the autumn of 2012.In this paper,we analyze the imaging issues of FMCW SAR in automobile mode(named as near range mode),where a vehicle is used as moving platform and a large looking angle is configured.The imaging geometry and signal properties are analyzed in detail.We emphasize the difference of the near range mode from the traditional airborne SAR mode.Based on the analysis,a focusing approach is proposed in the paper to handle the data focusing in the case.Simulation experiment and real data of automobile FMCW SAR are used to validate the analysis.
基金supported by Grant 2006CB400504 from the National Basic Research Program of ChinaGrant LCS-2006-03 fromthe Laboratory for Climate Studies, China MeteorologicalAdministration+1 种基金sponsored by the National Science Foundation of USA (ATM-0653136, ATM-0917743)sponsored by National Key Technologies R&D Pro-gram under Grant No. 2007BAC29B03
文摘The traditional anomaly (TA) reference frame and its corresponding anomaly for a given data span changes with the extension of data length. In this study, the modulated annual cycle (MAC), instead of the widely used climatological mean annual cycle, is used as an alternative reference frame for computing climate anomalies to study the multi-timescale variability of surface air temperature (SAT) in China based on homogenized daily data from 1952 to 2004. The Ensemble Empirical Mode Decomposition (EEMD) method is used to separate daily SAT into a high frequency component, a MAC component, an interannual component, and a decadal-to-trend component. The results show that the EEMD method can reflect historical events reasonably well, indicating its adaptive and temporally local characteristics. It is shown that MAC is a temporally local reference frame and will not be altered over a particular time span by an exten-sion of data length, thereby making it easier for physical interpretation. In the MAC reference frame, the low frequency component is found more suitable for studying the interannual to longer timescale variability (ILV) than a 13-month window running mean, which does not exclude the annual cycle. It is also better than other traditional versions (annual or summer or winter mean) of ILV, which contains a portion of the annual cycle. The analysis reveals that the variability of the annual cycle could be as large as the magnitude of interannual variability. The possible physical causes of different timescale variability of SAT in China are further discussed.
基金Project supported by the National Natural Science Foundation of China (Grant No 60438010).
文摘The mode hopping phenomenon induced by optical feedback in single-mode microchip Nd:YAG lasers is presented. With optical feedback, mode hopping strongly depends on two factors: the ratio of external cavity length to intra-cavity length, and initial gains of the two hopping modes, When external cavity length equals an integral multiple of intracavity length, there is almost no mode hopping. However, if the external cavity length does not equal an integral multiple of intra-cavity length, mode hopping occurs. The ratio of external cavity length to intra-cavity length determines the position of two-mode hopping, The initial gains of the two hopping modes determine the corresponding peak values and oscillating periods of them in the intensity modulation curves.
文摘An environmentally stable, repetition rate tunable, all-polarization-maintaining, Er-doped pulse fiber laser with a single-wall carbon nanotubes saturated absorber is demonstrated. The ring laser cavity includes a delay line enabling a tunable repetition rate to vary from 35.52 MHz to 35.64 MHz with continuous mode-locked operation. The laser output parameters confirm that the tunable mode-locked operations are stable. High environmental stability is also confirmed by the -130 dBc/Hz low phase noise, a 70-dB signal-to-noise ratio of radio frequency signals, a low amplitude fluctuation of 5.76 × 10-4, and a low fluctuation of reoetition rate of 12 Hz. The laser shows a high de^ree of oolarization of 93%.
基金The project supported by the National Natural Science Foundation of China (Nos. 10275068 and 10075049)
文摘Modulation of lower hybrid current drive was used successfully to suppress MHD activity. This was achieved in discharges with MHD m = 2 tearing modes during the discharge conditions Ip = 110 kA, Bt = 1.75 T, ne0 - 1.1 × 1013 cm-3. The delivering time of LHCD pulse is less then 30 μs. The amplitude, interval and the period of LHCD modulation pulse can be adjusted very conveniently. The modulation LHCD can be delivered very fast at any time during the discharge. The modulation LHCD period was always much shorter than the plasma resistive time (Tη ≈100 ms). So the profile of plasma current is changed much faster than the plasma resistive time. The different forms of LHCD modulating can be proved.
基金National Natural Science Foundation of China Under Grant No.50278090
文摘Under harmonic wave excitation, the dynamic response of a bilinear SDOF system can be expressed by the Hilbert spectrum. The Hilbert spectrum can be formulated by (1) the inter-wave combination mechanism between the steady response and the transient response when the system behaves linearly, or (2) the intra-wave modulation mechanism embedded in one intrinsic mode function (IMF) component when the system behaves nonlinearly. The temporal variation of the instantaneous frequency of the IMF component is consistent with the system nonlinear behavior of yielding and unloading. As a thorough study of this fundamental structural dynamics problem, this article investigates the influence of the amplitude of the harmonic wave excitation on the Hilbert spectrum and the intrinsic oscillatory mode of the dynamic response of a bilinear SDOF system.