Based on tests and theoretical calculation an optimum steam admission mode is proposed which can effectively solve the steam-excited vibration.An operation mode jointly considering the valve point and operation load i...Based on tests and theoretical calculation an optimum steam admission mode is proposed which can effectively solve the steam-excited vibration.An operation mode jointly considering the valve point and operation load is proposed based on the analysis and study of a large number of unit operation optimization methods.According to the steam-excited vibration that occurs during the optimization process when the nozzle governing steam turbine switches from a single valve to multi-valves a steam admission optimization program is proposed.This comprehensive program considering the steam-excited vibration is applied to a 600 MW steam turbine unit to obtain the optimum sliding pressure curve and the optimum operation mode and the steam-excited vibration is solved successfully.展开更多
A fast-slow coupled model of the hydro-turbine governing system (HTGS) is established by introducing frequency disturbance in this paper. Based on the proposed model, the performances of two time scales for bursting...A fast-slow coupled model of the hydro-turbine governing system (HTGS) is established by introducing frequency disturbance in this paper. Based on the proposed model, the performances of two time scales for bursting oscillations in the HTGS are investigated and the effect of periodic excitation of frequency disturbance is analyzed by using the bifurcation diagrams, time waveforms and phase portraits. We find that stability and operational characteristics of the HTGS change with the value of system parameter kd. Furthermore, the comparative analyses for the effect of the bursting oscillations on the system with different amplitudes of the periodic excitation a are carried out. Meanwhile, we obtain that the relative deviation of the mechanical torque mt rises with the increase of a. These methods and results of the study, combined with the performance of two time scales and the fast-slow coupled engineering model, provide some theoretical bases for investigating interesting physical phenomena of the engineering system.展开更多
The present study aims to further understanding of the principal reactions that occur during coal oxidation at moderate temperatures. Mass change and heat evolution of a sample were monitored by thermo-gravimetric ana...The present study aims to further understanding of the principal reactions that occur during coal oxidation at moderate temperatures. Mass change and heat evolution of a sample were monitored by thermo-gravimetric analysis coupled with differential thermal analysis (TGA/DTA). Gaseous and solid products were traced using online or in situ Fourier trans- form infrared spectroscopy (FTIR). Measurements were conducted by heating the samples up to 400?C, with the O2 concentration in the reaction medium set at 0, 10, 21, and 40 vol%, respectively. It was observed that the mass increase of a sample between 150?C and ~275oC was a result of the accumulation of C=O containing species in the coal structure, whereas substantial mass loss and heat evolution of a sample at ~400oC can be attributed to the significant involvement of the direct “burn-off” reaction. Enrichment of O2 inthe reaction medium leads to the acceleration in oxygen chemi- sorption, formation and decomposition of the solid oxygenated complexes, as well as the “burn-off” reaction. With the temperature increasing, the oxidation process governed by oxygen chemisorption gradually shifts to that by significant decomposition reactions, and eventually to that by the direct “burn-off” reaction. Temperature boundaries of these stages can be determined using parameters defined based on a set of TG/DTA data. Shift in the governing reactions is essentially due to the diverse requirements of reactants of the reactions and their energy barriers to be overcome. In en- gineering practice, the phenomena of self-heating and spontaneous combustion of coal correspond to chemisorption and the direct “burn-off” reaction, respectively.展开更多
A nonlinear mathematical model for hydro turbine governing system with saturation nonlinearity in small perturbation has been proposed with all the essential components, i.e. turbine, PID t^^pe governor with saturatio...A nonlinear mathematical model for hydro turbine governing system with saturation nonlinearity in small perturbation has been proposed with all the essential components, i.e. turbine, PID t^^pe governor with saturation part and generator included in the model. Existence, stability and direction of Hopf bifurcation of an example HTGS are investigated in detail and presented in forms of bifurcation diagrams and time "wavefomis. The analysis show,that a supercritical Hopf bifurcation may exist in hydraulic turbine systems in some certain conditions. Moreover, the dynaiidc behavior of system with different parameters such as Tw, Tab, Ty and 尺 are studied extensively. An example with numerical simulations is presented to illustrate the theoretical results. The researches provide a reasonable explanation for the Hopf phenomenon happened in operation of hydroelectric generating unit.展开更多
Peer-to-peer(P2P)lending has the potential to boost financial inclusion in emerging markets.This paper contributes to the literature on fintech governance in emerging Asian markets.It examines the case of the Indonesi...Peer-to-peer(P2P)lending has the potential to boost financial inclusion in emerging markets.This paper contributes to the literature on fintech governance in emerging Asian markets.It examines the case of the Indonesian government’s approach in regulating the P2P lending sector using both primary interviews and secondary firmlevel data.Driven by regulation tightening in China and regulatory gaps in Indonesia,Chinese investments became the largest in this sector contributing,however,to growing risks from illegal business practices.The Indonesian government responded by creating new regulations and institutions,mitigating risks without stifling the potential for financial inclusion.We conclude a proactive approach towards monitoring and regulating emerging high-tech industries should be sought by strengthening links with industry and civil society,and through international cooperation for policy and knowledge sharing.展开更多
To solve the problems existing in the flow characteristics of steam turbine unit, the influence of valve overlap degree on nozzle governing steam turbine had been studied. The combined flow characteristics of given va...To solve the problems existing in the flow characteristics of steam turbine unit, the influence of valve overlap degree on nozzle governing steam turbine had been studied. The combined flow characteristics of given valve overlap degree were obtained for a 600MW steam turbine unit by the method of theoretical calculation combined with simulation test, and the influence of valve overlap degree on governing stage efficiency and steam chest pressure had been also analyzed. This paper discussed the selection of rational overlap degree and introduced a new method of building model for governing stage efficiency of steam turbine in constant pressure operation condition, which provided theoretical guidance for optimization research on nozzle governing steam turbine operation.展开更多
Hydraulic butterfly valves have been widely applied in marine engineering because of their large switching torque, low pressure loss and suitability for large and medium diameter pipelines. Due to control problems res...Hydraulic butterfly valves have been widely applied in marine engineering because of their large switching torque, low pressure loss and suitability for large and medium diameter pipelines. Due to control problems resulting from switching angular speeds of the hydraulic butterfly valve, a throttle-governing control mode has been widely adopted, and detailed analysis has been carried out worldwide on the structural principle concerning speed-regulation and the load torque on the shaft while opening or closing a hydraulic butterfly valve. However relevant reports have yet been published on the change law, the error and the influencing factors of the rotational angular velocity of the hydraulic butterfly valve while opening and closing. In this article, research was based on some common specifications of a hydraulic butterfly valve with a symmetrical valve flap existing in a marine environment. The throttle governing system supplied by the accumulator to achieve the switching of the hydraulic control valve was adopted, and the mathematical models of the system were established in the actual conditions while the numerical simulations took place. The simulation results and analysis show that the rotational angular velocity and the error of the hydraulic butterfly valve while switching is influenced greatly by the drainage amount of the accumulator, resulting in pressure loss in the pipeline, the temperature of hydraulic medium and the load of the hydraulic butterfly valve. The simulation results and analysis provide a theoretical basis for the choice of the total capacity of the accumulator and pipeline diameters in a throttle governing system with a hydraulic butterfly valve.It also determines the type and specification of the hydraulic butterfly valve and the design of motion parameters of the transported fluid.展开更多
The research on the governing blockchain by blockchain supervision system is an important development trend of blockchain technology.In this system there is a supervisory blockchain managing and governing the supervis...The research on the governing blockchain by blockchain supervision system is an important development trend of blockchain technology.In this system there is a supervisory blockchain managing and governing the supervised blockchain based on blockchain technology,results in a uniquely cross-blockchain demand to consensus mechanism for solving the trust problem between supervisory blockchain and supervised blockchain.To solve this problem,this paper proposes a cross-blockchain consensus mechanism based on smart contract and a set of smart contracts endorse the crossblockchain consensus.New consensus mechanism called Proof-of-EndorseContracts(PoEC)consensus,which firstly transfers the consensus reached in supervisory blockchain to supervised blockchain by supervisory nodes,then packages the supervisory block in supervisory blockchain and transmits it to the smart contract deployed in the supervised blockchain,finally miners in supervised blockchain will execute and package the new block according to the status of the smart contract.The core part of the consensus mechanism is Endorse Contracts which designed and implemented by us and verified the effectiveness through experiments.PoEC consensus mechanism and Endorse Contracts support the supervised blockchain to join the governing blockchain by blockchain system without changing the original consensus mechanism,which has the advantages of low cost,high scalability and being able to crossblockchain.This paper proves that our method can provide a feasible crossblockchain governance scheme for the field of blockchain governance.展开更多
Since governing equations are discretized using a finite volume method for FV TVD scheme, we use integral governing equations to solve the flow field. We achieve N S equations in terms of cylinder coordinate velocity ...Since governing equations are discretized using a finite volume method for FV TVD scheme, we use integral governing equations to solve the flow field. We achieve N S equations in terms of cylinder coordinate velocity components in an arbitrary curvilinear coordinate using a tensor analytic method to the integral governing equations. It’s also testified that term g which include Jacobian can be reduced when governing equations are discretized on an infinitesimal small control volume. Numerical calculations indicated that this scheme can capture shocks and contact discontinuities exactly and the solution with this treatment is in good agreement with the experimental data.展开更多
This paper investigates the stability of the Francis hydro-turbine governing system with complex penstocks in the grid-connected mode. Firstly, a novel fractional-order nonlinear mathematical model of a Francis hydro-...This paper investigates the stability of the Francis hydro-turbine governing system with complex penstocks in the grid-connected mode. Firstly, a novel fractional-order nonlinear mathematical model of a Francis hydro-turbine governing system with complex penstocks is built from an engineering application perspective. This model is described by state-space equations and is composed of the Francis hydro-turbine model, the fractional-order complex penstocks model, the third-order generator model, and the hydraulic speed governing system model. Based on stability theory for a fractional-order nonlinear system, this study discovers a basic law of the bifurcation points of the above system with a change in the fractional-order a. Secondly, the stable region of the governing system is investigated in detail,and nonlinear dynamical behaviors of the system are identified and studied exhaustively via bifurcation diagrams, time waveforms, phase orbits, Poincare maps, power spectrums and spectrograms. Results of these numerical experiments provide a theoretical reference for further studies of the stability of hydropower stations.展开更多
The unity of “party spirit-people’s nature” is the basic proposition of Xi Jinping’s governance.Deng Xiaoping summarized the experience and lessons in the early days of reform and opening up,and put forward the ba...The unity of “party spirit-people’s nature” is the basic proposition of Xi Jinping’s governance.Deng Xiaoping summarized the experience and lessons in the early days of reform and opening up,and put forward the basic line of the “leadership and unity” of the party in the early stage of socialism around “one center,two basic points”;Xi Jinping’s so-called “unification”,which is based on the the basic line of Deng Xiaoping’s initial stage of building a socialist country that is “rich,strong,democratic,civilized,harmonious and beautiful”,has further established the importance of “people as the center” and “party’s leadership”.Therefore,the “people-centered” and “the party’s overall leadership” are unified and become the basic idea of General Secretary Xi Jinping’s governance of the country.Xi Jinping has put forward the unity of “party spirit-people’s nature”,the “consistency” between governing the country and politics,and the “integration” between the people’s interests and the party’s leadership,thus forming “persistence”,“comprehensive”,“confidence”,“maintenance” and other assertions.展开更多
This paper presents an on-line failure diagnostic method for steam turbine hydraulic governing system. This method uses the estimated values of friction on sliding valves to calculuate the corresponding dead band. Und...This paper presents an on-line failure diagnostic method for steam turbine hydraulic governing system. This method uses the estimated values of friction on sliding valves to calculuate the corresponding dead band. Under load rejection, the steam turbine's additional overspeed caused by these dead bands are studied through computer simulation. This on-line detection of dead bands can realize the failure detection of blockage fault of sliding valves.展开更多
针对传统超声波测风装置测风精度不高、抗噪声能力弱,提出了一种改进多重信号分类(multiple signal classification,MUSIC)算法的超声波测风方法。采用一种弧形6阵元超声波传感器阵列的测风结构,推导其阵列流型;在此基础上,添加小波阈...针对传统超声波测风装置测风精度不高、抗噪声能力弱,提出了一种改进多重信号分类(multiple signal classification,MUSIC)算法的超声波测风方法。采用一种弧形6阵元超声波传感器阵列的测风结构,推导其阵列流型;在此基础上,添加小波阈值降噪算法提高信号信噪比,降低噪声信号协方差矩阵的秩;再使用PHAT加权广义互相关时延估计算法以提高时延估计的准确性,同时根据时延关系对传统MUSIC算法矢量矩阵进行改进;最后通过MUSIC算法实现对风速风向的测量。理论分析与仿真结果表明:改进后的MUSIC算法具有较好的抗噪性能和较高的风参数测量精度,测量风速绝对误差达到0.15 m/s,风向绝对误差达到2°,可以应用于对风参数要求较高的场景。展开更多
局部放电是衡量电力设备绝缘状态的重要指标,局放检测需要解决局放源定位问题。多重信号分类(multiple signal classification,MUSIC)采用全向天线作为接收阵列,可实现多源信号的超分辨率空间谱估计,但要求高信号采样率,且在低信噪比情...局部放电是衡量电力设备绝缘状态的重要指标,局放检测需要解决局放源定位问题。多重信号分类(multiple signal classification,MUSIC)采用全向天线作为接收阵列,可实现多源信号的超分辨率空间谱估计,但要求高信号采样率,且在低信噪比情况下抗干扰能力不足。为此,提出基于弧形阵列的Dir(directional)-MUSIC算法,采用定向天线接收信号的强度信息,实现低信噪比下的局放源波达方向估计。设计了接收局放信号的Vivaldi天线阵列,并在不同信噪比下对算法的有效性进行仿真验证。结果表明:在低信噪比-10 dB来波方向5°下角度误差为0.14°,优于MUSIC算法;阵列在信噪比10 dB,测向范围[-80°,80°]内定位均方根误差小于1.5°。证明了基于弧形阵列的Dir-MUSIC算法有效提高了局放定位精度,且对噪声具有良好的鲁棒性,具有用于局放检测的潜力。展开更多
Hydro-turbine governing system is a time-varying complex system with strong non-linearity,and its dynamic characteristics are jointly affected by hydraulic,mechanical,electrical,and other factors.Aiming at the stabili...Hydro-turbine governing system is a time-varying complex system with strong non-linearity,and its dynamic characteristics are jointly affected by hydraulic,mechanical,electrical,and other factors.Aiming at the stability of the hydroturbine governing system,this paper first builds a dynamic model of the hydro-turbine governing system through mechanism modeling,and introduces the transfer coefficient characteristics under different load conditions to obtain the stability category of the system.BP neural network is used to perform the machine study and the predictive analysis of the stability of the system under different working conditions is carried out by using the additional momentum method to optimize the algorithm.The test set results show that the method can accurately distinguish the stability category of the hydro-turbine governing system(HTGS),and the research results can provide a theoretical reference for the operation and management of smart hydropower stations in the future.展开更多
基金The National Natural Science Foundation of China(No.51176031)
文摘Based on tests and theoretical calculation an optimum steam admission mode is proposed which can effectively solve the steam-excited vibration.An operation mode jointly considering the valve point and operation load is proposed based on the analysis and study of a large number of unit operation optimization methods.According to the steam-excited vibration that occurs during the optimization process when the nozzle governing steam turbine switches from a single valve to multi-valves a steam admission optimization program is proposed.This comprehensive program considering the steam-excited vibration is applied to a 600 MW steam turbine unit to obtain the optimum sliding pressure curve and the optimum operation mode and the steam-excited vibration is solved successfully.
基金Project supported by the Scientific Research Foundation of the National Natural Science Foundation of China–Outstanding Youth Foundation(Grant No.51622906)the National Natural Science Foundation of China(Grant No.51479173)+3 种基金the Fundamental Research Funds for the Central Universities,China(Grant No.201304030577)the Scientific Research Funds of Northwest A&F University,China(Grant No.2013BSJJ095)the Science Fund for Excellent Young Scholars from Northwest A&F University(Grant No.Z109021515)the Shaanxi Provincial Nova Program,China(Grant No.2016KJXX-55)
文摘A fast-slow coupled model of the hydro-turbine governing system (HTGS) is established by introducing frequency disturbance in this paper. Based on the proposed model, the performances of two time scales for bursting oscillations in the HTGS are investigated and the effect of periodic excitation of frequency disturbance is analyzed by using the bifurcation diagrams, time waveforms and phase portraits. We find that stability and operational characteristics of the HTGS change with the value of system parameter kd. Furthermore, the comparative analyses for the effect of the bursting oscillations on the system with different amplitudes of the periodic excitation a are carried out. Meanwhile, we obtain that the relative deviation of the mechanical torque mt rises with the increase of a. These methods and results of the study, combined with the performance of two time scales and the fast-slow coupled engineering model, provide some theoretical bases for investigating interesting physical phenomena of the engineering system.
文摘The present study aims to further understanding of the principal reactions that occur during coal oxidation at moderate temperatures. Mass change and heat evolution of a sample were monitored by thermo-gravimetric analysis coupled with differential thermal analysis (TGA/DTA). Gaseous and solid products were traced using online or in situ Fourier trans- form infrared spectroscopy (FTIR). Measurements were conducted by heating the samples up to 400?C, with the O2 concentration in the reaction medium set at 0, 10, 21, and 40 vol%, respectively. It was observed that the mass increase of a sample between 150?C and ~275oC was a result of the accumulation of C=O containing species in the coal structure, whereas substantial mass loss and heat evolution of a sample at ~400oC can be attributed to the significant involvement of the direct “burn-off” reaction. Enrichment of O2 inthe reaction medium leads to the acceleration in oxygen chemi- sorption, formation and decomposition of the solid oxygenated complexes, as well as the “burn-off” reaction. With the temperature increasing, the oxidation process governed by oxygen chemisorption gradually shifts to that by significant decomposition reactions, and eventually to that by the direct “burn-off” reaction. Temperature boundaries of these stages can be determined using parameters defined based on a set of TG/DTA data. Shift in the governing reactions is essentially due to the diverse requirements of reactants of the reactions and their energy barriers to be overcome. In en- gineering practice, the phenomena of self-heating and spontaneous combustion of coal correspond to chemisorption and the direct “burn-off” reaction, respectively.
文摘A nonlinear mathematical model for hydro turbine governing system with saturation nonlinearity in small perturbation has been proposed with all the essential components, i.e. turbine, PID t^^pe governor with saturation part and generator included in the model. Existence, stability and direction of Hopf bifurcation of an example HTGS are investigated in detail and presented in forms of bifurcation diagrams and time "wavefomis. The analysis show,that a supercritical Hopf bifurcation may exist in hydraulic turbine systems in some certain conditions. Moreover, the dynaiidc behavior of system with different parameters such as Tw, Tab, Ty and 尺 are studied extensively. An example with numerical simulations is presented to illustrate the theoretical results. The researches provide a reasonable explanation for the Hopf phenomenon happened in operation of hydroelectric generating unit.
基金This research project was partially funded by the Strategic Public Policy Research Funding Scheme from the Central Policy Unit of the Hong Kong Special Administrative Region Government,China(Project Number:S2016.A7.003).
文摘Peer-to-peer(P2P)lending has the potential to boost financial inclusion in emerging markets.This paper contributes to the literature on fintech governance in emerging Asian markets.It examines the case of the Indonesian government’s approach in regulating the P2P lending sector using both primary interviews and secondary firmlevel data.Driven by regulation tightening in China and regulatory gaps in Indonesia,Chinese investments became the largest in this sector contributing,however,to growing risks from illegal business practices.The Indonesian government responded by creating new regulations and institutions,mitigating risks without stifling the potential for financial inclusion.We conclude a proactive approach towards monitoring and regulating emerging high-tech industries should be sought by strengthening links with industry and civil society,and through international cooperation for policy and knowledge sharing.
文摘To solve the problems existing in the flow characteristics of steam turbine unit, the influence of valve overlap degree on nozzle governing steam turbine had been studied. The combined flow characteristics of given valve overlap degree were obtained for a 600MW steam turbine unit by the method of theoretical calculation combined with simulation test, and the influence of valve overlap degree on governing stage efficiency and steam chest pressure had been also analyzed. This paper discussed the selection of rational overlap degree and introduced a new method of building model for governing stage efficiency of steam turbine in constant pressure operation condition, which provided theoretical guidance for optimization research on nozzle governing steam turbine operation.
文摘Hydraulic butterfly valves have been widely applied in marine engineering because of their large switching torque, low pressure loss and suitability for large and medium diameter pipelines. Due to control problems resulting from switching angular speeds of the hydraulic butterfly valve, a throttle-governing control mode has been widely adopted, and detailed analysis has been carried out worldwide on the structural principle concerning speed-regulation and the load torque on the shaft while opening or closing a hydraulic butterfly valve. However relevant reports have yet been published on the change law, the error and the influencing factors of the rotational angular velocity of the hydraulic butterfly valve while opening and closing. In this article, research was based on some common specifications of a hydraulic butterfly valve with a symmetrical valve flap existing in a marine environment. The throttle governing system supplied by the accumulator to achieve the switching of the hydraulic control valve was adopted, and the mathematical models of the system were established in the actual conditions while the numerical simulations took place. The simulation results and analysis show that the rotational angular velocity and the error of the hydraulic butterfly valve while switching is influenced greatly by the drainage amount of the accumulator, resulting in pressure loss in the pipeline, the temperature of hydraulic medium and the load of the hydraulic butterfly valve. The simulation results and analysis provide a theoretical basis for the choice of the total capacity of the accumulator and pipeline diameters in a throttle governing system with a hydraulic butterfly valve.It also determines the type and specification of the hydraulic butterfly valve and the design of motion parameters of the transported fluid.
基金This work was supported by National Natural Science Foundation of China(Grant No.62162022 and 62162024)Key Projects in Hainan Province(Grant ZDYF2021GXJS003 and Grant ZDYF2020040)the Major science and technology project of Hainan Province(Grant No.ZDKJ2020012).
文摘The research on the governing blockchain by blockchain supervision system is an important development trend of blockchain technology.In this system there is a supervisory blockchain managing and governing the supervised blockchain based on blockchain technology,results in a uniquely cross-blockchain demand to consensus mechanism for solving the trust problem between supervisory blockchain and supervised blockchain.To solve this problem,this paper proposes a cross-blockchain consensus mechanism based on smart contract and a set of smart contracts endorse the crossblockchain consensus.New consensus mechanism called Proof-of-EndorseContracts(PoEC)consensus,which firstly transfers the consensus reached in supervisory blockchain to supervised blockchain by supervisory nodes,then packages the supervisory block in supervisory blockchain and transmits it to the smart contract deployed in the supervised blockchain,finally miners in supervised blockchain will execute and package the new block according to the status of the smart contract.The core part of the consensus mechanism is Endorse Contracts which designed and implemented by us and verified the effectiveness through experiments.PoEC consensus mechanism and Endorse Contracts support the supervised blockchain to join the governing blockchain by blockchain system without changing the original consensus mechanism,which has the advantages of low cost,high scalability and being able to crossblockchain.This paper proves that our method can provide a feasible crossblockchain governance scheme for the field of blockchain governance.
文摘Since governing equations are discretized using a finite volume method for FV TVD scheme, we use integral governing equations to solve the flow field. We achieve N S equations in terms of cylinder coordinate velocity components in an arbitrary curvilinear coordinate using a tensor analytic method to the integral governing equations. It’s also testified that term g which include Jacobian can be reduced when governing equations are discretized on an infinitesimal small control volume. Numerical calculations indicated that this scheme can capture shocks and contact discontinuities exactly and the solution with this treatment is in good agreement with the experimental data.
基金supported by the Scientific Research Foundation of the National Natural Science Foundation-Outstanding Youth Foundation(No.51622906)National Natural Science Foundation of China (No.51479173)+4 种基金Fundamental Research Funds for the Central Universities (201304030577)Scientific Research Funds of Northwest A&F University (2013BSJJ095)the Scientific Research Foundation for Water Engineering in Shaanxi Province (2013slkj-12)the Science Fund for Excellent Young Scholars from Northwest A&F University (Z109021515)the Shaanxi Nova Program (2016KJXX-55)
文摘This paper investigates the stability of the Francis hydro-turbine governing system with complex penstocks in the grid-connected mode. Firstly, a novel fractional-order nonlinear mathematical model of a Francis hydro-turbine governing system with complex penstocks is built from an engineering application perspective. This model is described by state-space equations and is composed of the Francis hydro-turbine model, the fractional-order complex penstocks model, the third-order generator model, and the hydraulic speed governing system model. Based on stability theory for a fractional-order nonlinear system, this study discovers a basic law of the bifurcation points of the above system with a change in the fractional-order a. Secondly, the stable region of the governing system is investigated in detail,and nonlinear dynamical behaviors of the system are identified and studied exhaustively via bifurcation diagrams, time waveforms, phase orbits, Poincare maps, power spectrums and spectrograms. Results of these numerical experiments provide a theoretical reference for further studies of the stability of hydropower stations.
文摘The unity of “party spirit-people’s nature” is the basic proposition of Xi Jinping’s governance.Deng Xiaoping summarized the experience and lessons in the early days of reform and opening up,and put forward the basic line of the “leadership and unity” of the party in the early stage of socialism around “one center,two basic points”;Xi Jinping’s so-called “unification”,which is based on the the basic line of Deng Xiaoping’s initial stage of building a socialist country that is “rich,strong,democratic,civilized,harmonious and beautiful”,has further established the importance of “people as the center” and “party’s leadership”.Therefore,the “people-centered” and “the party’s overall leadership” are unified and become the basic idea of General Secretary Xi Jinping’s governance of the country.Xi Jinping has put forward the unity of “party spirit-people’s nature”,the “consistency” between governing the country and politics,and the “integration” between the people’s interests and the party’s leadership,thus forming “persistence”,“comprehensive”,“confidence”,“maintenance” and other assertions.
文摘This paper presents an on-line failure diagnostic method for steam turbine hydraulic governing system. This method uses the estimated values of friction on sliding valves to calculuate the corresponding dead band. Under load rejection, the steam turbine's additional overspeed caused by these dead bands are studied through computer simulation. This on-line detection of dead bands can realize the failure detection of blockage fault of sliding valves.
文摘针对传统超声波测风装置测风精度不高、抗噪声能力弱,提出了一种改进多重信号分类(multiple signal classification,MUSIC)算法的超声波测风方法。采用一种弧形6阵元超声波传感器阵列的测风结构,推导其阵列流型;在此基础上,添加小波阈值降噪算法提高信号信噪比,降低噪声信号协方差矩阵的秩;再使用PHAT加权广义互相关时延估计算法以提高时延估计的准确性,同时根据时延关系对传统MUSIC算法矢量矩阵进行改进;最后通过MUSIC算法实现对风速风向的测量。理论分析与仿真结果表明:改进后的MUSIC算法具有较好的抗噪性能和较高的风参数测量精度,测量风速绝对误差达到0.15 m/s,风向绝对误差达到2°,可以应用于对风参数要求较高的场景。
文摘局部放电是衡量电力设备绝缘状态的重要指标,局放检测需要解决局放源定位问题。多重信号分类(multiple signal classification,MUSIC)采用全向天线作为接收阵列,可实现多源信号的超分辨率空间谱估计,但要求高信号采样率,且在低信噪比情况下抗干扰能力不足。为此,提出基于弧形阵列的Dir(directional)-MUSIC算法,采用定向天线接收信号的强度信息,实现低信噪比下的局放源波达方向估计。设计了接收局放信号的Vivaldi天线阵列,并在不同信噪比下对算法的有效性进行仿真验证。结果表明:在低信噪比-10 dB来波方向5°下角度误差为0.14°,优于MUSIC算法;阵列在信噪比10 dB,测向范围[-80°,80°]内定位均方根误差小于1.5°。证明了基于弧形阵列的Dir-MUSIC算法有效提高了局放定位精度,且对噪声具有良好的鲁棒性,具有用于局放检测的潜力。
文摘Hydro-turbine governing system is a time-varying complex system with strong non-linearity,and its dynamic characteristics are jointly affected by hydraulic,mechanical,electrical,and other factors.Aiming at the stability of the hydroturbine governing system,this paper first builds a dynamic model of the hydro-turbine governing system through mechanism modeling,and introduces the transfer coefficient characteristics under different load conditions to obtain the stability category of the system.BP neural network is used to perform the machine study and the predictive analysis of the stability of the system under different working conditions is carried out by using the additional momentum method to optimize the algorithm.The test set results show that the method can accurately distinguish the stability category of the hydro-turbine governing system(HTGS),and the research results can provide a theoretical reference for the operation and management of smart hydropower stations in the future.