Using the principle of analytical geometry, several properties of the space straight lille are proved. Based on these properties, the equilibrium of general space force system is considered and its four new scalar-typ...Using the principle of analytical geometry, several properties of the space straight lille are proved. Based on these properties, the equilibrium of general space force system is considered and its four new scalar-type equilibrium equations are derived which are equivalent to the vector-type necessary and sufficient conditions far equilibrium.展开更多
In this article,we suggest a new form of modified Kudryashov’s method(NMK)to study the Dual-mode Sawada Kotera model.We know very well that the more the solutions depend on many constants,the easier it is to study th...In this article,we suggest a new form of modified Kudryashov’s method(NMK)to study the Dual-mode Sawada Kotera model.We know very well that the more the solutions depend on many constants,the easier it is to study the model better by observing the change in the constants and what their impact is on the solutions.From this point of view,we developed the modified Kudryashov method and put it in a general form that contains more than one controllable constant.We have studied the model in this way and presented figures showing the correctness of what we hoped to reach from the proposed method.In addition to the results we reached,they were not sufficient,so we presented an extensive numerical study of this model using the finite differences method.We also came up with the local truncation error for the difference scheme is h^(6) k^(2)(1+k^(2)).In addition,the analytical solutions we reached were compared with the numerical solutions,and we presented many forms that show that the results we reached are a clear contribution to this field.展开更多
文摘Using the principle of analytical geometry, several properties of the space straight lille are proved. Based on these properties, the equilibrium of general space force system is considered and its four new scalar-type equilibrium equations are derived which are equivalent to the vector-type necessary and sufficient conditions far equilibrium.
文摘In this article,we suggest a new form of modified Kudryashov’s method(NMK)to study the Dual-mode Sawada Kotera model.We know very well that the more the solutions depend on many constants,the easier it is to study the model better by observing the change in the constants and what their impact is on the solutions.From this point of view,we developed the modified Kudryashov method and put it in a general form that contains more than one controllable constant.We have studied the model in this way and presented figures showing the correctness of what we hoped to reach from the proposed method.In addition to the results we reached,they were not sufficient,so we presented an extensive numerical study of this model using the finite differences method.We also came up with the local truncation error for the difference scheme is h^(6) k^(2)(1+k^(2)).In addition,the analytical solutions we reached were compared with the numerical solutions,and we presented many forms that show that the results we reached are a clear contribution to this field.