Wireless sensor networks (WSNs) are required to provide different levels of Quality of Services (QoS) based on the type of applications. Providing QoS support in wireless sensor networks is an emerging area of researc...Wireless sensor networks (WSNs) are required to provide different levels of Quality of Services (QoS) based on the type of applications. Providing QoS support in wireless sensor networks is an emerging area of research. Due to resource constraints like processing power, memory, bandwidth and power sources in sensor networks, QoS support in WSNs is a challenging task. In this paper, we discuss the QoS requirements in WSNs and present a survey of some of the QoS aware routing techniques in WSNs. We also explore the middleware approaches for QoS support in WSNs and finally, highlight some open issues and future direction of research for providing QoS in WSNs.展开更多
A layered algorithm by bidirectional searching is proposed in this paper to solve the problem that it is difficult and time consuming to reach an optimal solution of the route search with multiple parameter restrictio...A layered algorithm by bidirectional searching is proposed in this paper to solve the problem that it is difficult and time consuming to reach an optimal solution of the route search with multiple parameter restrictions for good quality of service. Firstly, a set of reachable paths to each intermediate node from the source node and the sink node based on adjacent matrix transformation are calculated respectively. Then a temporal optimal path is selected by adopting the proposed heuristic method according to a non-linear cost function. When the total number of the accumulated nodes by bidirectional searching reaches n-2, the paths from two directions to an intermediate node should be combined and several paths via different nodes from the source node to the sink node can be obtained, then an optimal path in the whole set of paths can be taken as the output route. Some simulation examples are included to show the effectiveness and efficiency of the proposed method. In addition, the proposed algorithm can be implemented with parallel computation and thus, the new algorithm has better performance in time complexity than other algorithms. Mathematical analysis indicates that the maximum complexity in time, based on parallel computation, is the same as the polynomial complexity of O(kn2-3kn+k), and some simulation results are shown to support this analysis.展开更多
Due to the diversified demands of quality of service(QoS) in volume multimedia application, QoS routings for multiservice are becoming a research hotspot in low earth orbit(LEO) satellite networks. A novel QoS sat...Due to the diversified demands of quality of service(QoS) in volume multimedia application, QoS routings for multiservice are becoming a research hotspot in low earth orbit(LEO) satellite networks. A novel QoS satellite routing algorithm for multi-class traffic is proposed. The goal of the routing algorithm is to provide the distinct QoS for different traffic classes and improve the utilization of network resources. Traffic is classified into three classes and allocated priorities based on their QoS requirements, respectively. A priority queuing mechanism guarantees the algorithm to work better for high-priority classes. In order to control the congestion, a blocking probability analysis model is built up based on the Markov process theory. Finally, according to the classification link-cost metrics, routings for different classes are calculated with the distinct QoS requirments and the status of network resource. Simulations verify the performance of the routing algorithm at different time and in different regions, and results demonstrate that the algorithm has great advantages in terms of the average delay and the blocking probability. Meanwhile, the robustness issue is also discussed.展开更多
A heuristic theoretical optimal routing algorithm (TORA) is presented to achieve the data-gathering structure of location-aided quality of service (QoS) in wireless sensor networks (WSNs). The construction of TO...A heuristic theoretical optimal routing algorithm (TORA) is presented to achieve the data-gathering structure of location-aided quality of service (QoS) in wireless sensor networks (WSNs). The construction of TORA is based on a kind of swarm intelligence (SI) mechanism, i. e. , ant colony optimization. Firstly, the ener- gy-efficient weight is designed based on flow distribution to divide WSNs into different functional regions, so the routing selection can self-adapt asymmetric power configurations with lower latency. Then, the designs of the novel heuristic factor and the pheromone updating rule can endow ant-like agents with the ability of detecting the local networks energy status and approaching the theoretical optimal tree, thus improving the adaptability and en- ergy-efficiency in route building. Simulation results show that compared with some classic routing algorithms, TORA can further minimize the total communication energy cost and enhance the QoS performance with low-de- lay effect under the data-gathering condition.展开更多
Wireless Sensor Networks(WSN)started gaining attention due to its wide application in the fields of data collection and information processing.The recent advancements in multimedia sensors demand the Quality of Servic...Wireless Sensor Networks(WSN)started gaining attention due to its wide application in the fields of data collection and information processing.The recent advancements in multimedia sensors demand the Quality of Service(QoS)be maintained up to certain standards.The restrictions and requirements in QoS management completely depend upon the nature of target application.Some of the major QoS parameters in WSN are energy efficiency,network lifetime,delay and throughput.In this scenario,clustering and routing are considered as the most effective techniques to meet the demands of QoS.Since they are treated as NP(Non-deterministic Polynomial-time)hard problem,Swarm Intelligence(SI)techniques can be implemented.The current research work introduces a new QoS aware Clustering and Routing-based technique using Swarm Intelligence(QoSCRSI)algorithm.The proposed QoSCRSI technique performs two-level clustering and proficient routing.Initially,the fuzzy is hybridized with Glowworm Swarm Optimization(GSO)-based clustering(HFGSOC)technique for optimal selection of Cluster Heads(CHs).Here,Quantum Salp Swarm optimization Algorithm(QSSA)-based routing technique(QSSAR)is utilized to select the possible routes in the network.In order to evaluate the performance of the proposed QoSCRSI technique,the authors conducted extensive simulation analysis with varying node counts.The experimental outcomes,obtained from the proposed QoSCRSI technique,apparently proved that the technique is better compared to other state-of-the-art techniques in terms of energy efficiency,network lifetime,overhead,throughput,and delay.展开更多
In the distributed networks,many applications send information from a source node to multiple destination nodes.To support these applications requirements,the paper presents a multi-objective algorithm based on ant co...In the distributed networks,many applications send information from a source node to multiple destination nodes.To support these applications requirements,the paper presents a multi-objective algorithm based on ant colonies to construct a multicast tree for data transmission in a computer network.The proposed algorithm simultaneously optimizes total weight(cost,delay and hop)of the multicast tree.Experimental results prove the proposed algorithm outperforms a recently published Multi-objective Multicast Algorithm specially designed for solving the multicast routing problem.Also,it is able to find a better solution with fast convergence speed and high reliability.展开更多
Most recent satellite network research has focused on providing routing services without considering security. In this paper, for the sake of better global coverage, we introduce a novel triple-layered satellite netwo...Most recent satellite network research has focused on providing routing services without considering security. In this paper, for the sake of better global coverage, we introduce a novel triple-layered satellite network architecture including Geostationary Earth Orbit (GEO), Highly Elliptical Orbit (HEO), and Low Earth Orbit (LEO) satellite layers, which provides the near-global coverage with 24 hour uninterrupted over the areas varying from 75° S to 90° N. On the basis of the hierarchical architecture, we propose a QoS-guaranteed secure multicast routing protocol (QGSMRP) for satellite IP networks using the logical location concept to isolate the mobility of LEO and HEO satellites. In QGSMRP, we employ the asymmetric cryptography to secure the control messages via the pairwise key pre-distribution, and present a least cost tree (LCT) strategy to construct the multicast tree under the condition that the QoS constraints are guaranteed, aiming to minimize the tree cost. Simulation results show that the performance benefits of the proposed QGSMRP in terms of the end-to-end tree delay, the tree cost, and the failure ratio of multicasting connections by comparison with the conventional shortest path tree (SPT) strategy.展开更多
The rapidly increasing number of Internet of Things(IoT)devices and Quality of Service(QoS)requirements have made the provisioning of network solutions to meet this demand a major research topic.Providing fast and rel...The rapidly increasing number of Internet of Things(IoT)devices and Quality of Service(QoS)requirements have made the provisioning of network solutions to meet this demand a major research topic.Providing fast and reliable routing paths based on the QoS requirements of IoT devices is very important task for Industry 4.0.The software-defined network is one of the most current interesting research developments,offering an efficient and effective solution for centralized control and network intelligence.A new SDN-IoT paradigm has been proposed to improve network QoS,taking advantage of SDN architecture in IoT networks.At the present time,most publish-subscribe IoT platforms assume the same QoS requirements for all customers.However,in many real-world scenarios of IoT applications,different subscribers may have different E2E delay requirements.Providing reliable differentiated services has become a relevant problem.For this we developed a technique for classifying IoT flows with the individual subscriber recommendation on the importance of certain parameters for particular classes of traffic taken into account.To improve the QoS for mission-critical IoT applications in large-scale SDN-IoT infrastructure,we focused on optimizing routing in the SDN.For this purpose,a centralized routing model based on QoS parameters and IoT priority flow for the SDN was proposed and implemented.We have compared the proposed routing model with the state-of-art deterministic multiconstrained centralized QoS routing model(DMCQR).The developed centralized routing model in comparison with the known DMCQR flow routing achieved better balance of channel resources load due to rational choice of transmission paths for different traffic.And it was possible to reduce up to 3 times the average delay of real time flows service from end to end,for which with the existing DMCQR routing model the permissible delay rates were not met.展开更多
The optimal solution of the multi-constrained QoS multicast routing problem is a tree-like hierarchical structure in the topology graph. This multicast route contains a feasible path from the source node to each of th...The optimal solution of the multi-constrained QoS multicast routing problem is a tree-like hierarchical structure in the topology graph. This multicast route contains a feasible path from the source node to each of the destinations with respect to a set of QoS constraints while minimizing a cost function. Often, it is a tree. In other cases, the hierarchies can return several times to nodes and links of the topology graph. Similarly to Steiner problem, finding such a structure is an NP-hard problem. The usual tree and topology enumeration algorithms applied for the Steiner problem cannot be used to solve the addressed problem. In this paper, we propose an exact algorithm based on the Branch and Bound principle and improved by the Lookahead technique. We show relevant properties of the optimum hierarchy permitting efficient pruning of the search space. To our knowledge, our paper is the first to propose an exact algorithm for this non-trivial multi-constrained optimal multicast route computation. Simulations illustrate the efficiency of the proposed pruning operations. The analysis of the execution time shows that in simple topologies and with tight QoS constraints the exact algorithm requires relatively little execution time. With loose constraints the computation time cannot be tolerated even for off-line route computation. In these cases, the solution is close to a Steiner tree and heuristics can be applied. These results can serve as basis for the design of efficient, polynomial-time routing algorithms.展开更多
The issue of burst losses imposes a constraint on the development of Optical Burst Switching (OBS) networks. Heavy burst losses strongly affect the Quality of Service (QoS) intended by end users. This article pres...The issue of burst losses imposes a constraint on the development of Optical Burst Switching (OBS) networks. Heavy burst losses strongly affect the Quality of Service (QoS) intended by end users. This article presents a QoS aware Routing and Wavelength Allocation (RWA) technique for burst switching in OBS networks. The RWA problem is modeled as a bi-objective Integer Linear Programming (ILP) problem, where objective functions are based on minimizing the number of wavelengths used and the number of hops traversed to fulfill the burst transmission requests for a given set of node pairs. The ILP model is solved using a novel approach based on a Differential Evolution (DE) algorithm. Analytical results show that the DE algorithm provides a better performance compared to shortest path routing, which is a widely accepted routing strategy for OBS networks.展开更多
The concept of network centric warfare (NCW) and the distributed equal-node network architecture in NCW are introduced in this paper. The data flow requirement model in NCW is presented. Based on synthetic analysis ...The concept of network centric warfare (NCW) and the distributed equal-node network architecture in NCW are introduced in this paper. The data flow requirement model in NCW is presented. Based on synthetic analysis of network resource, the QOS (Quality of Service) parameters and their characters, the high requirement of real-time synchronization in NCW, the single QOS routing constraint, and the network latency between the detector and weapon control station, are presented. To take an example for 3-node brigade (regiment) level NCW demonstration platform, the algorithm of end-to-end network latency and path information in NCW are presented. The algorithm program based on Server/Client architecture is developed. The optimal path is the link whose latency between the detector and weapon control station is the smallest. This paper solves the key issue and satisfies the needs on network latency in NCW. The study results can be widely applied in the decision of the optimal path which is based on multiple service provision points.展开更多
Quality of service (QoS) multicast routing has continued to be a very important research topic in the Internet. A method of multicast routing is proposed to simultaneously optimize several parameters based on multiobj...Quality of service (QoS) multicast routing has continued to be a very important research topic in the Internet. A method of multicast routing is proposed to simultaneously optimize several parameters based on multiobjective genetic algorithm, after the related work is reviewed. The contribution lies on that the selection process of such routing is treated with multiobjective optimization. Different quality criterions in IP network are taken into account for multicast communications. A set of routing trees is generated to approximate the Pareto front of multicast problem. Multiple trees can be selected from the final set of nondominated solutions, and applied to obtain a good overall link cost and balance traffic distribution according to some simulation results.展开更多
Vehicular ad-hoc networks (VANETs) are a significant field in the intelligent transportation system (ITS) for improving road security. The interaction among the vehicles is enclosed under VANETs. Many experiments ...Vehicular ad-hoc networks (VANETs) are a significant field in the intelligent transportation system (ITS) for improving road security. The interaction among the vehicles is enclosed under VANETs. Many experiments have been performed in the region of VANET improvement. A familiar challenge that occurs is obtaining various constrained quality of service (QoS) metrics. For resolving this issue, this study obtains a cost design for the vehicle routing issue by focusing on the QoS metrics such as collision, travel cost, awareness, and congestion. The awareness of QoS is fuzzified into a price design that comprises the entire cost of routing. As the genetic algorithm (GA) endures from the most significant challenges such as complexity, unassisted issues in mutation, detecting slow convergence, global maxima, multifaceted features under genetic coding, and better fitting, the currently established lion algorithm (LA) is employed. The computation is analyzed by deploying three well-known studies such as cost analysis, convergence analysis, and complexity investigations. A numerical analysis with quantitative outcome has also been studied based on the obtained correlation analysis among various cost functions. It is found that LA performs better than GA with a reduction in complexity and routing cost.展开更多
In order to share multimedia transmissions in mesh networks and optimize the utilization of network resources, this paper presents a Two-stage Evolutionary Algorithm (TEA), i.e., unicast routing evolution and multicas...In order to share multimedia transmissions in mesh networks and optimize the utilization of network resources, this paper presents a Two-stage Evolutionary Algorithm (TEA), i.e., unicast routing evolution and multicast path composition, for dynamic multicast routing. The TEA uses a novel link-duplicate-degree encoding, which can encode a multicast path in the link-duplicate-degree and decode the path as a link vector easily. A dynamic algorithm for adding nodes to or removing nodes from a multicast group and a repairing algorithm are also covered in this paper. As the TEA is based on global evaluation, the quality of the multicast path remains stabilized without degradation when multicast members change over time. Therefore, it is not necessary to rearrange the multicast path during the life cycle of the multicast sessions. Simulation results show that the TEA is efficient and convergent.展开更多
In recent years,Software Defined Networking(SDN)has become an important candidate for communication infrastructure in smart cities.It produces a drastic increase in the need for delivery of video services that are of ...In recent years,Software Defined Networking(SDN)has become an important candidate for communication infrastructure in smart cities.It produces a drastic increase in the need for delivery of video services that are of high resolution,multiview,and large-scale in nature.However,this entity gets easily influenced by heterogeneous behaviour of the user’s wireless link features that might reduce the quality of video stream for few or all clients.The development of SDN allows the emergence of new possibilities for complicated controlling of video conferences.Besides,multicast routing protocol with multiple constraints in terms of Quality of Service(QoS)is a Nondeterministic Polynomial time(NP)hard problem which can be solved only with the help of metaheuristic optimization algorithms.With this motivation,the current research paper presents a new Improved BlackWidow Optimization with Levy Distribution model(IBWO-LD)-based multicast routing protocol for smart cities.The presented IBWO-LD model aims at minimizing the energy consumption and bandwidth utilization while at the same time accomplish improved quality of video streams that the clients receive.Besides,a priority-based scheduling and classifier model is designed to allocate multicast request based on the type of applications and deadline constraints.A detailed experimental analysis was carried out to ensure the outcomes improved under different aspects.The results from comprehensive comparative analysis highlighted the superiority of the proposed IBWO-LD model over other compared methods.展开更多
In this paper, we made a detail analysis for the ESAMPH algorithm, and proposed ESAMPH_D algorithm according to the insufficient of ESAMPH algorithm. The ESAMPH_D algorithm does not consider those paths that do not sa...In this paper, we made a detail analysis for the ESAMPH algorithm, and proposed ESAMPH_D algorithm according to the insufficient of ESAMPH algorithm. The ESAMPH_D algorithm does not consider those paths that do not satisfy the delay constraint, so we can ensure that all paths be taken into account will meet the limit of delay constraint, then we find the least costly path in order to build a minimum cost multicast tree. Simulation results show that the algorithm is better than ESAMPH algorithm in performance.展开更多
Secure routing in Mobile Adhoc Network(Manet)is the key issue now a day in providing secure access to different network services.As mobile devices are used in accessing different services,performing secure routing bec...Secure routing in Mobile Adhoc Network(Manet)is the key issue now a day in providing secure access to different network services.As mobile devices are used in accessing different services,performing secure routing becomes a challenging task.Towards this,different approaches exist whichfind the trusted route based on their previous transmission details and behavior of different nodes.Also,the methods focused on trust measurement based on tiny information obtained from local nodes or with global information which are incomplete.How-ever,the adversary nodes are more capable and participate in each transmission not just to steal the data also to generate numerous threats in degrading QoS(Quality of Service)parameters like throughput,packet delivery ratio,and latency of the network.This encourages us in designing efficient routing scheme to max-imize QoS performance.To solve this issue,a two stage trust verification scheme and secure routing algorithm named GL-Trust(Global-Local-Trust)is presented.The method involves in route discovery as like popular AODV(Adaptive On-demand Distance Vector)which upgrades the protocol to collect other information like transmission supported,successful transmissions,energy,mobility,the num-ber of neighbors,and the number of alternate route to the same destination and so on.Further,the method would perform global trust approximation to measure the value of global trust and perform local trust approximation to measure local trust.Using both the measures,the method would select a optimal route to perform routing.The protocol is designed to perform localized route selection when there is a link failure which supports the achievement of higher QoS performance.By incorporating different features in measuring trust value towards secure routing,the proposed GL-Trust scheme improves the performance of secure routing as well as other QoS factors.展开更多
In Shadow-Fading model, it is difficult to achieve higher Packet Delivery Ratio (PDR) due to the effects of large scale fading. The main goal of this paper is to improve the PDR in Shadow-Fading environment. To achiev...In Shadow-Fading model, it is difficult to achieve higher Packet Delivery Ratio (PDR) due to the effects of large scale fading. The main goal of this paper is to improve the PDR in Shadow-Fading environment. To achieve this objective a protocol has been proposed that discovers backup routes for active sessions. These backup routes salvage the packets of active session in case of active route failure. It is found by research that proactively maintaining backup routes for ac-tive sessions can noticeably improve the PDR in Shadow-Fading environment. This protocol has been implemented with a mechanism of having backup routes and simulations have been conducted by using both node disjoint paths and link disjoint paths. Comparisons have been made between new protocol as well as AODV protocol. Simulation has been carried out using Network Simulator 2 (NS2) and the results show that the proposed QoSAR protocol exhibits higher PDR than AODV protocol in Shadow-fading environment.展开更多
A Mobile Ad hoc NETwork(MANET)is a self-configuring network that is not reliant on infrastructure.This paper introduces a new multipath routing method based on the Multi-Hop Routing(MHR)technique.MHR is the consecutiv...A Mobile Ad hoc NETwork(MANET)is a self-configuring network that is not reliant on infrastructure.This paper introduces a new multipath routing method based on the Multi-Hop Routing(MHR)technique.MHR is the consecutive selection of suitable relay nodes to send information across nodes that are not within direct range of each other.Failing to ensure good MHR leads to several negative consequences,ultimately causing unsuccessful data transmission in a MANET.This research work consists of three portions.The first to attempt to propose an efficient MHR protocol is the design of Priority Based Dynamic Routing(PBDR)to adapt to the dynamic MANET environment by reducing Node Link Failures(NLF)in the network.This is achieved by dynamically considering a node’s mobility parameters like relative velocity and link duration,which enable the next-hop selection.This method works more efficiently than the traditional protocols.Then the second stage is the Improved Multi-Path Dynamic Routing(IMPDR).The enhancement is mainly focused on further improving the Quality of Service(QoS)in MANETs by introducing a QoS timer at every node to help in the QoS routing of MANETs.Since QoS is the most vital metric that assesses a protocol,its dynamic estimation has improved network performance considerably.This method uses distance,linkability,trust,and QoS as the four parameters for the next-hop selection.IMPDR is compared against traditional routing protocols.The Network Simulator-2(NS2)is used to conduct a simulation analysis of the protocols under consideration.The proposed tests are assessed for the Packet Delivery Ratio(PDR),Packet Loss Rate(PLR),End-to-End Delay(EED),and Network Throughput(NT).展开更多
This paper focuses on solving the delay constrained least cost routing problem, and propose a simple, distributed heuristic solution, called distributed recursive delay constrained least cost (DR DCLC) unicast routing...This paper focuses on solving the delay constrained least cost routing problem, and propose a simple, distributed heuristic solution, called distributed recursive delay constrained least cost (DR DCLC) unicast routing algorithm. DR DCLC only requires local information to find the near optimal solution. The correctness of DR DCLC is proued by showing that it is always capable of constructing a loop free delay constrained path within finite time, if such a path exists. Simulation is also used to compare DR DCLC to the optimal DCLC algorithm and other algorithms.展开更多
文摘Wireless sensor networks (WSNs) are required to provide different levels of Quality of Services (QoS) based on the type of applications. Providing QoS support in wireless sensor networks is an emerging area of research. Due to resource constraints like processing power, memory, bandwidth and power sources in sensor networks, QoS support in WSNs is a challenging task. In this paper, we discuss the QoS requirements in WSNs and present a survey of some of the QoS aware routing techniques in WSNs. We also explore the middleware approaches for QoS support in WSNs and finally, highlight some open issues and future direction of research for providing QoS in WSNs.
文摘A layered algorithm by bidirectional searching is proposed in this paper to solve the problem that it is difficult and time consuming to reach an optimal solution of the route search with multiple parameter restrictions for good quality of service. Firstly, a set of reachable paths to each intermediate node from the source node and the sink node based on adjacent matrix transformation are calculated respectively. Then a temporal optimal path is selected by adopting the proposed heuristic method according to a non-linear cost function. When the total number of the accumulated nodes by bidirectional searching reaches n-2, the paths from two directions to an intermediate node should be combined and several paths via different nodes from the source node to the sink node can be obtained, then an optimal path in the whole set of paths can be taken as the output route. Some simulation examples are included to show the effectiveness and efficiency of the proposed method. In addition, the proposed algorithm can be implemented with parallel computation and thus, the new algorithm has better performance in time complexity than other algorithms. Mathematical analysis indicates that the maximum complexity in time, based on parallel computation, is the same as the polynomial complexity of O(kn2-3kn+k), and some simulation results are shown to support this analysis.
基金Supported by the National High Technology Research and Development Program of China(″863″Program)(2010AAxxx404)~~
文摘Due to the diversified demands of quality of service(QoS) in volume multimedia application, QoS routings for multiservice are becoming a research hotspot in low earth orbit(LEO) satellite networks. A novel QoS satellite routing algorithm for multi-class traffic is proposed. The goal of the routing algorithm is to provide the distinct QoS for different traffic classes and improve the utilization of network resources. Traffic is classified into three classes and allocated priorities based on their QoS requirements, respectively. A priority queuing mechanism guarantees the algorithm to work better for high-priority classes. In order to control the congestion, a blocking probability analysis model is built up based on the Markov process theory. Finally, according to the classification link-cost metrics, routings for different classes are calculated with the distinct QoS requirments and the status of network resource. Simulations verify the performance of the routing algorithm at different time and in different regions, and results demonstrate that the algorithm has great advantages in terms of the average delay and the blocking probability. Meanwhile, the robustness issue is also discussed.
基金Supported by the Foundation of National Natural Science of China(60802005,50803016)the Science Foundation for the Excellent Youth Scholars in East China University of Science and Technology(YH0157127)the Undergraduate Innovational Experimentation Program in East China University of Science andTechnology(X1033)~~
文摘A heuristic theoretical optimal routing algorithm (TORA) is presented to achieve the data-gathering structure of location-aided quality of service (QoS) in wireless sensor networks (WSNs). The construction of TORA is based on a kind of swarm intelligence (SI) mechanism, i. e. , ant colony optimization. Firstly, the ener- gy-efficient weight is designed based on flow distribution to divide WSNs into different functional regions, so the routing selection can self-adapt asymmetric power configurations with lower latency. Then, the designs of the novel heuristic factor and the pheromone updating rule can endow ant-like agents with the ability of detecting the local networks energy status and approaching the theoretical optimal tree, thus improving the adaptability and en- ergy-efficiency in route building. Simulation results show that compared with some classic routing algorithms, TORA can further minimize the total communication energy cost and enhance the QoS performance with low-de- lay effect under the data-gathering condition.
文摘Wireless Sensor Networks(WSN)started gaining attention due to its wide application in the fields of data collection and information processing.The recent advancements in multimedia sensors demand the Quality of Service(QoS)be maintained up to certain standards.The restrictions and requirements in QoS management completely depend upon the nature of target application.Some of the major QoS parameters in WSN are energy efficiency,network lifetime,delay and throughput.In this scenario,clustering and routing are considered as the most effective techniques to meet the demands of QoS.Since they are treated as NP(Non-deterministic Polynomial-time)hard problem,Swarm Intelligence(SI)techniques can be implemented.The current research work introduces a new QoS aware Clustering and Routing-based technique using Swarm Intelligence(QoSCRSI)algorithm.The proposed QoSCRSI technique performs two-level clustering and proficient routing.Initially,the fuzzy is hybridized with Glowworm Swarm Optimization(GSO)-based clustering(HFGSOC)technique for optimal selection of Cluster Heads(CHs).Here,Quantum Salp Swarm optimization Algorithm(QSSA)-based routing technique(QSSAR)is utilized to select the possible routes in the network.In order to evaluate the performance of the proposed QoSCRSI technique,the authors conducted extensive simulation analysis with varying node counts.The experimental outcomes,obtained from the proposed QoSCRSI technique,apparently proved that the technique is better compared to other state-of-the-art techniques in terms of energy efficiency,network lifetime,overhead,throughput,and delay.
文摘In the distributed networks,many applications send information from a source node to multiple destination nodes.To support these applications requirements,the paper presents a multi-objective algorithm based on ant colonies to construct a multicast tree for data transmission in a computer network.The proposed algorithm simultaneously optimizes total weight(cost,delay and hop)of the multicast tree.Experimental results prove the proposed algorithm outperforms a recently published Multi-objective Multicast Algorithm specially designed for solving the multicast routing problem.Also,it is able to find a better solution with fast convergence speed and high reliability.
文摘Most recent satellite network research has focused on providing routing services without considering security. In this paper, for the sake of better global coverage, we introduce a novel triple-layered satellite network architecture including Geostationary Earth Orbit (GEO), Highly Elliptical Orbit (HEO), and Low Earth Orbit (LEO) satellite layers, which provides the near-global coverage with 24 hour uninterrupted over the areas varying from 75° S to 90° N. On the basis of the hierarchical architecture, we propose a QoS-guaranteed secure multicast routing protocol (QGSMRP) for satellite IP networks using the logical location concept to isolate the mobility of LEO and HEO satellites. In QGSMRP, we employ the asymmetric cryptography to secure the control messages via the pairwise key pre-distribution, and present a least cost tree (LCT) strategy to construct the multicast tree under the condition that the QoS constraints are guaranteed, aiming to minimize the tree cost. Simulation results show that the performance benefits of the proposed QGSMRP in terms of the end-to-end tree delay, the tree cost, and the failure ratio of multicasting connections by comparison with the conventional shortest path tree (SPT) strategy.
基金This research was supported by the Ukrainian project No.0120U102201“Development the methods and unified software-hardware means for the deployment of the energy efficient intent-based multi-purpose information and communication networks”and Comenius University in Bratislava,Faculty of Management.
文摘The rapidly increasing number of Internet of Things(IoT)devices and Quality of Service(QoS)requirements have made the provisioning of network solutions to meet this demand a major research topic.Providing fast and reliable routing paths based on the QoS requirements of IoT devices is very important task for Industry 4.0.The software-defined network is one of the most current interesting research developments,offering an efficient and effective solution for centralized control and network intelligence.A new SDN-IoT paradigm has been proposed to improve network QoS,taking advantage of SDN architecture in IoT networks.At the present time,most publish-subscribe IoT platforms assume the same QoS requirements for all customers.However,in many real-world scenarios of IoT applications,different subscribers may have different E2E delay requirements.Providing reliable differentiated services has become a relevant problem.For this we developed a technique for classifying IoT flows with the individual subscriber recommendation on the importance of certain parameters for particular classes of traffic taken into account.To improve the QoS for mission-critical IoT applications in large-scale SDN-IoT infrastructure,we focused on optimizing routing in the SDN.For this purpose,a centralized routing model based on QoS parameters and IoT priority flow for the SDN was proposed and implemented.We have compared the proposed routing model with the state-of-art deterministic multiconstrained centralized QoS routing model(DMCQR).The developed centralized routing model in comparison with the known DMCQR flow routing achieved better balance of channel resources load due to rational choice of transmission paths for different traffic.And it was possible to reduce up to 3 times the average delay of real time flows service from end to end,for which with the existing DMCQR routing model the permissible delay rates were not met.
文摘The optimal solution of the multi-constrained QoS multicast routing problem is a tree-like hierarchical structure in the topology graph. This multicast route contains a feasible path from the source node to each of the destinations with respect to a set of QoS constraints while minimizing a cost function. Often, it is a tree. In other cases, the hierarchies can return several times to nodes and links of the topology graph. Similarly to Steiner problem, finding such a structure is an NP-hard problem. The usual tree and topology enumeration algorithms applied for the Steiner problem cannot be used to solve the addressed problem. In this paper, we propose an exact algorithm based on the Branch and Bound principle and improved by the Lookahead technique. We show relevant properties of the optimum hierarchy permitting efficient pruning of the search space. To our knowledge, our paper is the first to propose an exact algorithm for this non-trivial multi-constrained optimal multicast route computation. Simulations illustrate the efficiency of the proposed pruning operations. The analysis of the execution time shows that in simple topologies and with tight QoS constraints the exact algorithm requires relatively little execution time. With loose constraints the computation time cannot be tolerated even for off-line route computation. In these cases, the solution is close to a Steiner tree and heuristics can be applied. These results can serve as basis for the design of efficient, polynomial-time routing algorithms.
文摘The issue of burst losses imposes a constraint on the development of Optical Burst Switching (OBS) networks. Heavy burst losses strongly affect the Quality of Service (QoS) intended by end users. This article presents a QoS aware Routing and Wavelength Allocation (RWA) technique for burst switching in OBS networks. The RWA problem is modeled as a bi-objective Integer Linear Programming (ILP) problem, where objective functions are based on minimizing the number of wavelengths used and the number of hops traversed to fulfill the burst transmission requests for a given set of node pairs. The ILP model is solved using a novel approach based on a Differential Evolution (DE) algorithm. Analytical results show that the DE algorithm provides a better performance compared to shortest path routing, which is a widely accepted routing strategy for OBS networks.
文摘The concept of network centric warfare (NCW) and the distributed equal-node network architecture in NCW are introduced in this paper. The data flow requirement model in NCW is presented. Based on synthetic analysis of network resource, the QOS (Quality of Service) parameters and their characters, the high requirement of real-time synchronization in NCW, the single QOS routing constraint, and the network latency between the detector and weapon control station, are presented. To take an example for 3-node brigade (regiment) level NCW demonstration platform, the algorithm of end-to-end network latency and path information in NCW are presented. The algorithm program based on Server/Client architecture is developed. The optimal path is the link whose latency between the detector and weapon control station is the smallest. This paper solves the key issue and satisfies the needs on network latency in NCW. The study results can be widely applied in the decision of the optimal path which is based on multiple service provision points.
文摘Quality of service (QoS) multicast routing has continued to be a very important research topic in the Internet. A method of multicast routing is proposed to simultaneously optimize several parameters based on multiobjective genetic algorithm, after the related work is reviewed. The contribution lies on that the selection process of such routing is treated with multiobjective optimization. Different quality criterions in IP network are taken into account for multicast communications. A set of routing trees is generated to approximate the Pareto front of multicast problem. Multiple trees can be selected from the final set of nondominated solutions, and applied to obtain a good overall link cost and balance traffic distribution according to some simulation results.
文摘Vehicular ad-hoc networks (VANETs) are a significant field in the intelligent transportation system (ITS) for improving road security. The interaction among the vehicles is enclosed under VANETs. Many experiments have been performed in the region of VANET improvement. A familiar challenge that occurs is obtaining various constrained quality of service (QoS) metrics. For resolving this issue, this study obtains a cost design for the vehicle routing issue by focusing on the QoS metrics such as collision, travel cost, awareness, and congestion. The awareness of QoS is fuzzified into a price design that comprises the entire cost of routing. As the genetic algorithm (GA) endures from the most significant challenges such as complexity, unassisted issues in mutation, detecting slow convergence, global maxima, multifaceted features under genetic coding, and better fitting, the currently established lion algorithm (LA) is employed. The computation is analyzed by deploying three well-known studies such as cost analysis, convergence analysis, and complexity investigations. A numerical analysis with quantitative outcome has also been studied based on the obtained correlation analysis among various cost functions. It is found that LA performs better than GA with a reduction in complexity and routing cost.
文摘In order to share multimedia transmissions in mesh networks and optimize the utilization of network resources, this paper presents a Two-stage Evolutionary Algorithm (TEA), i.e., unicast routing evolution and multicast path composition, for dynamic multicast routing. The TEA uses a novel link-duplicate-degree encoding, which can encode a multicast path in the link-duplicate-degree and decode the path as a link vector easily. A dynamic algorithm for adding nodes to or removing nodes from a multicast group and a repairing algorithm are also covered in this paper. As the TEA is based on global evaluation, the quality of the multicast path remains stabilized without degradation when multicast members change over time. Therefore, it is not necessary to rearrange the multicast path during the life cycle of the multicast sessions. Simulation results show that the TEA is efficient and convergent.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under Grant Number(RGP.1/282/42)Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R191),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘In recent years,Software Defined Networking(SDN)has become an important candidate for communication infrastructure in smart cities.It produces a drastic increase in the need for delivery of video services that are of high resolution,multiview,and large-scale in nature.However,this entity gets easily influenced by heterogeneous behaviour of the user’s wireless link features that might reduce the quality of video stream for few or all clients.The development of SDN allows the emergence of new possibilities for complicated controlling of video conferences.Besides,multicast routing protocol with multiple constraints in terms of Quality of Service(QoS)is a Nondeterministic Polynomial time(NP)hard problem which can be solved only with the help of metaheuristic optimization algorithms.With this motivation,the current research paper presents a new Improved BlackWidow Optimization with Levy Distribution model(IBWO-LD)-based multicast routing protocol for smart cities.The presented IBWO-LD model aims at minimizing the energy consumption and bandwidth utilization while at the same time accomplish improved quality of video streams that the clients receive.Besides,a priority-based scheduling and classifier model is designed to allocate multicast request based on the type of applications and deadline constraints.A detailed experimental analysis was carried out to ensure the outcomes improved under different aspects.The results from comprehensive comparative analysis highlighted the superiority of the proposed IBWO-LD model over other compared methods.
文摘In this paper, we made a detail analysis for the ESAMPH algorithm, and proposed ESAMPH_D algorithm according to the insufficient of ESAMPH algorithm. The ESAMPH_D algorithm does not consider those paths that do not satisfy the delay constraint, so we can ensure that all paths be taken into account will meet the limit of delay constraint, then we find the least costly path in order to build a minimum cost multicast tree. Simulation results show that the algorithm is better than ESAMPH algorithm in performance.
文摘Secure routing in Mobile Adhoc Network(Manet)is the key issue now a day in providing secure access to different network services.As mobile devices are used in accessing different services,performing secure routing becomes a challenging task.Towards this,different approaches exist whichfind the trusted route based on their previous transmission details and behavior of different nodes.Also,the methods focused on trust measurement based on tiny information obtained from local nodes or with global information which are incomplete.How-ever,the adversary nodes are more capable and participate in each transmission not just to steal the data also to generate numerous threats in degrading QoS(Quality of Service)parameters like throughput,packet delivery ratio,and latency of the network.This encourages us in designing efficient routing scheme to max-imize QoS performance.To solve this issue,a two stage trust verification scheme and secure routing algorithm named GL-Trust(Global-Local-Trust)is presented.The method involves in route discovery as like popular AODV(Adaptive On-demand Distance Vector)which upgrades the protocol to collect other information like transmission supported,successful transmissions,energy,mobility,the num-ber of neighbors,and the number of alternate route to the same destination and so on.Further,the method would perform global trust approximation to measure the value of global trust and perform local trust approximation to measure local trust.Using both the measures,the method would select a optimal route to perform routing.The protocol is designed to perform localized route selection when there is a link failure which supports the achievement of higher QoS performance.By incorporating different features in measuring trust value towards secure routing,the proposed GL-Trust scheme improves the performance of secure routing as well as other QoS factors.
文摘In Shadow-Fading model, it is difficult to achieve higher Packet Delivery Ratio (PDR) due to the effects of large scale fading. The main goal of this paper is to improve the PDR in Shadow-Fading environment. To achieve this objective a protocol has been proposed that discovers backup routes for active sessions. These backup routes salvage the packets of active session in case of active route failure. It is found by research that proactively maintaining backup routes for ac-tive sessions can noticeably improve the PDR in Shadow-Fading environment. This protocol has been implemented with a mechanism of having backup routes and simulations have been conducted by using both node disjoint paths and link disjoint paths. Comparisons have been made between new protocol as well as AODV protocol. Simulation has been carried out using Network Simulator 2 (NS2) and the results show that the proposed QoSAR protocol exhibits higher PDR than AODV protocol in Shadow-fading environment.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R195),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘A Mobile Ad hoc NETwork(MANET)is a self-configuring network that is not reliant on infrastructure.This paper introduces a new multipath routing method based on the Multi-Hop Routing(MHR)technique.MHR is the consecutive selection of suitable relay nodes to send information across nodes that are not within direct range of each other.Failing to ensure good MHR leads to several negative consequences,ultimately causing unsuccessful data transmission in a MANET.This research work consists of three portions.The first to attempt to propose an efficient MHR protocol is the design of Priority Based Dynamic Routing(PBDR)to adapt to the dynamic MANET environment by reducing Node Link Failures(NLF)in the network.This is achieved by dynamically considering a node’s mobility parameters like relative velocity and link duration,which enable the next-hop selection.This method works more efficiently than the traditional protocols.Then the second stage is the Improved Multi-Path Dynamic Routing(IMPDR).The enhancement is mainly focused on further improving the Quality of Service(QoS)in MANETs by introducing a QoS timer at every node to help in the QoS routing of MANETs.Since QoS is the most vital metric that assesses a protocol,its dynamic estimation has improved network performance considerably.This method uses distance,linkability,trust,and QoS as the four parameters for the next-hop selection.IMPDR is compared against traditional routing protocols.The Network Simulator-2(NS2)is used to conduct a simulation analysis of the protocols under consideration.The proposed tests are assessed for the Packet Delivery Ratio(PDR),Packet Loss Rate(PLR),End-to-End Delay(EED),and Network Throughput(NT).
文摘This paper focuses on solving the delay constrained least cost routing problem, and propose a simple, distributed heuristic solution, called distributed recursive delay constrained least cost (DR DCLC) unicast routing algorithm. DR DCLC only requires local information to find the near optimal solution. The correctness of DR DCLC is proued by showing that it is always capable of constructing a loop free delay constrained path within finite time, if such a path exists. Simulation is also used to compare DR DCLC to the optimal DCLC algorithm and other algorithms.