This paper incorporates the Baidu Index into various heterogeneous autoregressive type time series models and shows that the Baidu Index is a superior predictor of realized volatility in the SSE 50 Index.Furthermore,t...This paper incorporates the Baidu Index into various heterogeneous autoregressive type time series models and shows that the Baidu Index is a superior predictor of realized volatility in the SSE 50 Index.Furthermore,the predictability of the Baidu Index is found to rise as the forecasting horizon increases.We also find that continuous components enhance predictive power across all horizons,but that increases are only sustained in the short and medium terms,as the long-term impact on volatility is less persistent.Our findings should be expected to influence investors interested in constructing trading strategies based on realized volatility.展开更多
When the observed price process is the true underlying price process plus microstructure noise, it is known that realized volatility (RV) estimates will be overwhelmed by the noise when the sampling frequency approach...When the observed price process is the true underlying price process plus microstructure noise, it is known that realized volatility (RV) estimates will be overwhelmed by the noise when the sampling frequency approaches infinity. Therefore, it may be optimal to sample less frequently, and averaging the less frequently sampled subsamples can improve estimation for quadratic variation. In this paper, we extend this idea to forecasting daily realized volatility. While subsample averaging has been proposed and used in estimating RV, this paper is the first that uses subsample averaging for forecasting RV. The subsample averaging method we examine incorporates the high frequency data in different levels of systematic sampling. It first pools the high frequency data into several subsamples, then generates forecasts from each subsample, and then combines these forecasts. We find that in daily S&P 500 return realized volatility forecasts, subsample averaging generates better forecasts than those using only one subsample.展开更多
Because the U.S.is a major player in the international oil market,it is interesting to study whether aggregate and state-level economic conditions can predict the subse-quent realized volatility of oil price returns.T...Because the U.S.is a major player in the international oil market,it is interesting to study whether aggregate and state-level economic conditions can predict the subse-quent realized volatility of oil price returns.To address this research question,we frame our analysis in terms of variants of the popular heterogeneous autoregressive realized volatility(HAR-RV)model.To estimate the models,we use quantile-regression and quantile machine learning(Lasso)estimators.Our estimation results highlights the dif-ferential effects of economic conditions on the quantiles of the conditional distribution of realized volatility.Using weekly data for the period April 1987 to December 2021,we document evidence of predictability at a biweekly and monthly horizon.展开更多
The original whale optimization algorithm(WOA)has a low initial population quality and tends to converge to local optimal solutions.To address these challenges,this paper introduces an improved whale optimization algo...The original whale optimization algorithm(WOA)has a low initial population quality and tends to converge to local optimal solutions.To address these challenges,this paper introduces an improved whale optimization algorithm called OLCHWOA,incorporating a chaos mechanism and an opposition-based learning strategy.This algorithm introduces chaotic initialization and opposition-based initialization operators during the population initialization phase,thereby enhancing the quality of the initial whale population.Additionally,including an elite opposition-based learning operator significantly improves the algorithm’s global search capabilities during iterations.The work and contributions of this paper are primarily reflected in two aspects.Firstly,an improved whale algorithm with enhanced development capabilities and a wide range of application scenarios is proposed.Secondly,the proposed OLCHWOA is used to optimize the hyperparameters of the Long Short-Term Memory(LSTM)networks.Subsequently,a prediction model for Realized Volatility(RV)based on OLCHWOA-LSTM is proposed to optimize hyperparameters automatically.To evaluate the performance of OLCHWOA,a series of comparative experiments were conducted using a variety of advanced algorithms.These experiments included 38 standard test functions from CEC2013 and CEC2019 and three constrained engineering design problems.The experimental results show that OLCHWOA ranks first in accuracy and stability under the same maximum fitness function calls budget.Additionally,the China Securities Index 300(CSI 300)dataset is used to evaluate the effectiveness of the proposed OLCHWOA-LSTM model in predicting RV.The comparison results with the other eight models show that the proposed model has the highest accuracy and goodness of fit in predicting RV.This further confirms that OLCHWOA effectively addresses real-world optimization problems.展开更多
This paper is motivated by Bitcoin’s rapid ascension into mainstream finance and recent evidence of a strong relationship between Bitcoin and US stock markets.It is also motivated by a lack of empirical studies on wh...This paper is motivated by Bitcoin’s rapid ascension into mainstream finance and recent evidence of a strong relationship between Bitcoin and US stock markets.It is also motivated by a lack of empirical studies on whether Bitcoin prices contain useful information for the volatility of US stock returns,particularly at the sectoral level of data.We specifically assess Bitcoin prices’ability to predict the volatility of US composite and sectoral stock indices using both in-sample and out-of-sample analyses over multiple forecast horizons,based on daily data from November 22,2017,to December,30,2021.The findings show that Bitcoin prices have significant predictive power for US stock volatility,with an inverse relationship between Bitcoin prices and stock sector volatility.Regardless of the stock sectors or number of forecast horizons,the model that includes Bitcoin prices consistently outperforms the benchmark historical average model.These findings are independent of the volatility measure used.Using Bitcoin prices as a predictor yields higher economic gains.These findings emphasize the importance and utility of tracking Bitcoin prices when forecasting the volatility of US stock sectors,which is important for practitioners and policymakers.展开更多
Meroplankton play a crucial role in both benthic and pelagic ecosystems.Existing quantitative research on estimating the quantities of meroplankton groups is both underrepresented and inaccurate.To investigate and eva...Meroplankton play a crucial role in both benthic and pelagic ecosystems.Existing quantitative research on estimating the quantities of meroplankton groups is both underrepresented and inaccurate.To investigate and evaluate the influence of varying mesh sizes(505 and 160μm)on the sampling efficiency of meroplankton,we conducted an examination using two commonly used plankton nets during the spring season in the Southern Yellow Sea(SYS).Our study revealed a total of 12 meroplankton groups,with 9 groups identified in the 505-μm mesh nets and 11 groups in the 160-μm mesh nets.The results demonstrated the superior collection efficiency of the 160-μm net compared to the 505-μm net across the majority of meroplankton groups.Furthermore,we focused on exploring the abundance,distribution patterns,and realized niches of meroplankton collected by the two mesh size nets,and observed that the distribution of meroplankton closely resembled the distribution of possible benthic adults in the SYS.Correlation analysis of the six dominant groups collected in the 160-μm mesh nets revealed that seawater temperature and salinity emerged as the key environmental factors driving variations in meroplankton abundance within the SYS.This study also found that a smaller mesh size net does not necessarily capture meroplankton more comprehensively.A comprehensive understanding of the ecological characteristics of meroplankton requires the combination of two types of nets for research.Our research significantly advances our understanding of the quantification,abundance,and distribution of meroplankton,serving as a valuable contribution to the broader landscape of detailed quantitative meroplankton studies.展开更多
This study utilizes the Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroskedasticity (DCC-GARCH) model to investigate the dynamic relationship between Chinese and U.S. stock markets amid t...This study utilizes the Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroskedasticity (DCC-GARCH) model to investigate the dynamic relationship between Chinese and U.S. stock markets amid the COVID-19 pandemic. Initially, a univariate GARCH model is developed to derive residual sequences, which are then used to estimate the DCC model parameters. The research reveals a significant rise in the interconnection between the Chinese and U.S. stock markets during the pandemic. The S&P 500 index displayed higher sensitivity and greater volatility in response to the pandemic, whereas the CSI 300 index showed superior resilience and stability. Analysis and model estimation suggest that the market’s dependence on historical data has intensified and its sensitivity to recent shocks has heightened. Predictions from the model indicate increased market volatility during the pandemic. While the model is proficient in capturing market trends, there remains potential for enhancing the accuracy of specific volatility predictions. The study proposes recommendations for policymakers and investors, highlighting the importance of improved cooperation in international financial market regulation and investor education.展开更多
Black-Scholes Model (B-SM) simulates the dynamics of financial market and contains instruments such as options and puts which are major indices requiring solution. B-SM is known to estimate the correct prices of Europ...Black-Scholes Model (B-SM) simulates the dynamics of financial market and contains instruments such as options and puts which are major indices requiring solution. B-SM is known to estimate the correct prices of European Stock options and establish the theoretical foundation for Option pricing. Therefore, this paper evaluates the Black-Schole model in simulating the European call in a cash flow in the dependent drift and focuses on obtaining analytic and then approximate solution for the model. The work also examines Fokker Planck Equation (FPE) and extracts the link between FPE and B-SM for non equilibrium systems. The B-SM is then solved via the Elzaki transform method (ETM). The computational procedures were obtained using MAPLE 18 with the solution provided in the form of convergent series.展开更多
Since market uncertainty,or volatility,serves as a crucial gauge for assessing the traits of market fluctuations,the link between stock market volume and price continues to be a focal point of interest in finance.This...Since market uncertainty,or volatility,serves as a crucial gauge for assessing the traits of market fluctuations,the link between stock market volume and price continues to be a focal point of interest in finance.This study examines the dynamic,nonlinear correlations between Chinese stock volatility,trading volume,and return using a hybrid approach that combines the Markov-switching regime with the vector autoregressive model(MS-VAR).The empirical findings are as follows:(1)The Chinese stock market can be divided into three regional systems:steady downward,steady upward,and high volatility.The three states have similar frequencies of occurrence,and their corresponding stable probabilities are not high,indicating that the Chinese stock market is unstable.(2)Asymmetric dynamic relationships exist between market volatility,investment return,and trading volume.For different regimes,while the effect of trading volume on volatility and return appears to be insignificant,the impacts of volatility and return on trading volume are considerably strong.(3)A regime-dependent,contemporaneous correlation between volatility and return is observed,which also reflects the behavior of the Chinese stock market“chasing up and down”.However,a positive contemporaneous correlation always exists between volatility and trading volumes in different regimes,indicating that uncertainty in the Chinese stock market is closely related to information inflow.展开更多
Background:Ampelopsis grossedentata,vine tea,which is the tea alternative beverages in China.In vine tea processing,a large amount of broken tea is produced,which has low commercial value.Methods:This study investigat...Background:Ampelopsis grossedentata,vine tea,which is the tea alternative beverages in China.In vine tea processing,a large amount of broken tea is produced,which has low commercial value.Methods:This study investigates the influence of different extraction methods(room temperature water extraction,boiling water extraction,ultrasonic-assisted room temperature water extraction,and ultrasonic-assisted boiling water extraction,referred to as room temperature water extraction(RE),boiling water extraction(BE),ultrasonic assistance at room temperature water extraction(URE),and ultrasonic assistance in boiling water extraction(UBE))on the yield,dihydromyricetin(DMY)content,free amino acid composition,volatile aroma components,and antioxidant properties of vine tea extracts.Results:A notable influence of extraction temperature on the yield of vine tea extracts(P<0.05),with BE yielding the highest at 43.13±0.26%,higher than that of RE(34.29±0.81%).Ultrasound-assisted extraction significantly increased the DMY content of the extracts(P<0.05),whereas DMY content in the RE extracts was 59.94±1.70%,that of URE reached 66.14±2.78%.Analysis revealed 17 amino acids,with L-serine and aspartic acid being the most abundant in the extracts,nevertheless ultrasound-assisted extraction reduced total free amino acid content.Gas chromatography-mass spectrometry analysis demonstrated an increase in the diversity and quantity of compounds in the vine tea water extracts obtained through ultrasonic-assisted extraction.Specifically,69 and 68 volatile compounds were found in URE and UBE extracts,which were higher than the number found in RE and BE extracts.In vitro,antioxidant activity assessments revealed varying antioxidant capacities among different extraction methods,with RE exhibiting the highest DPPH scavenging rate,URE leading in ABTS•+free radical scavenging,and BE demonstrating superior ferric ion reducing antioxidant activity.Conclusion:The findings suggest that extraction methods significantly influence the chemical composition and antioxidant properties of vine tea extracts.Ultrasonic-assisted extraction proved instrumental in elevating the DMY content in vine tea extracts,thereby enriching its flavor profile while maintaining its antioxidant properties.展开更多
The aim of the present work is to examine whether the price volatility of nonferrous metal futures can be used to predict the aggregate stock market returns in China. During a sample period from January of 2004 to Dec...The aim of the present work is to examine whether the price volatility of nonferrous metal futures can be used to predict the aggregate stock market returns in China. During a sample period from January of 2004 to December of 2011, empirical results show that the price volatility of basic nonferrous metals is a good predictor of value-weighted stock portfolio at various horizons in both in-sample and out-of-sample regressions. The predictive power of metal copper volatility is greater than that of aluminum. The results are robust to alternative measurements of variables and econometric approaches. After controlling several well-known macro pricing variables, the predictive power of copper volatility declines but remains statistically significant. Since the predictability exists only during our sample period, we conjecture that the stock market predictability by metal price volatility is partly driven by commodity financialization.展开更多
文章选取上证综指5分钟收盘价序列高频数据,采用ACF拟合、多种损失函数、SPA检验和VaR回测检验对不同误差分布下的包含时变波动、异方差结构和加权已实现极差的Realized HAR GARCH模型进行研究。实证结果表明,新模型相比于以往模型更能...文章选取上证综指5分钟收盘价序列高频数据,采用ACF拟合、多种损失函数、SPA检验和VaR回测检验对不同误差分布下的包含时变波动、异方差结构和加权已实现极差的Realized HAR GARCH模型进行研究。实证结果表明,新模型相比于以往模型更能够捕捉上证综指的波动特征,具有更好的波动率拟合和预测效果,且VaR度量效果更优。研究丰富了时变长记忆高频波动率模型,从时变波动和噪声异方差结构视角为投资者和监管机构进行风险管控提供参考。展开更多
基金This work is supported by the National Natural Science Foundation of China(71790594,71701150,and U1811462).
文摘This paper incorporates the Baidu Index into various heterogeneous autoregressive type time series models and shows that the Baidu Index is a superior predictor of realized volatility in the SSE 50 Index.Furthermore,the predictability of the Baidu Index is found to rise as the forecasting horizon increases.We also find that continuous components enhance predictive power across all horizons,but that increases are only sustained in the short and medium terms,as the long-term impact on volatility is less persistent.Our findings should be expected to influence investors interested in constructing trading strategies based on realized volatility.
文摘When the observed price process is the true underlying price process plus microstructure noise, it is known that realized volatility (RV) estimates will be overwhelmed by the noise when the sampling frequency approaches infinity. Therefore, it may be optimal to sample less frequently, and averaging the less frequently sampled subsamples can improve estimation for quadratic variation. In this paper, we extend this idea to forecasting daily realized volatility. While subsample averaging has been proposed and used in estimating RV, this paper is the first that uses subsample averaging for forecasting RV. The subsample averaging method we examine incorporates the high frequency data in different levels of systematic sampling. It first pools the high frequency data into several subsamples, then generates forecasts from each subsample, and then combines these forecasts. We find that in daily S&P 500 return realized volatility forecasts, subsample averaging generates better forecasts than those using only one subsample.
文摘Because the U.S.is a major player in the international oil market,it is interesting to study whether aggregate and state-level economic conditions can predict the subse-quent realized volatility of oil price returns.To address this research question,we frame our analysis in terms of variants of the popular heterogeneous autoregressive realized volatility(HAR-RV)model.To estimate the models,we use quantile-regression and quantile machine learning(Lasso)estimators.Our estimation results highlights the dif-ferential effects of economic conditions on the quantiles of the conditional distribution of realized volatility.Using weekly data for the period April 1987 to December 2021,we document evidence of predictability at a biweekly and monthly horizon.
基金The National Natural Science Foundation of China(Grant No.81973791)funded this research.
文摘The original whale optimization algorithm(WOA)has a low initial population quality and tends to converge to local optimal solutions.To address these challenges,this paper introduces an improved whale optimization algorithm called OLCHWOA,incorporating a chaos mechanism and an opposition-based learning strategy.This algorithm introduces chaotic initialization and opposition-based initialization operators during the population initialization phase,thereby enhancing the quality of the initial whale population.Additionally,including an elite opposition-based learning operator significantly improves the algorithm’s global search capabilities during iterations.The work and contributions of this paper are primarily reflected in two aspects.Firstly,an improved whale algorithm with enhanced development capabilities and a wide range of application scenarios is proposed.Secondly,the proposed OLCHWOA is used to optimize the hyperparameters of the Long Short-Term Memory(LSTM)networks.Subsequently,a prediction model for Realized Volatility(RV)based on OLCHWOA-LSTM is proposed to optimize hyperparameters automatically.To evaluate the performance of OLCHWOA,a series of comparative experiments were conducted using a variety of advanced algorithms.These experiments included 38 standard test functions from CEC2013 and CEC2019 and three constrained engineering design problems.The experimental results show that OLCHWOA ranks first in accuracy and stability under the same maximum fitness function calls budget.Additionally,the China Securities Index 300(CSI 300)dataset is used to evaluate the effectiveness of the proposed OLCHWOA-LSTM model in predicting RV.The comparison results with the other eight models show that the proposed model has the highest accuracy and goodness of fit in predicting RV.This further confirms that OLCHWOA effectively addresses real-world optimization problems.
文摘This paper is motivated by Bitcoin’s rapid ascension into mainstream finance and recent evidence of a strong relationship between Bitcoin and US stock markets.It is also motivated by a lack of empirical studies on whether Bitcoin prices contain useful information for the volatility of US stock returns,particularly at the sectoral level of data.We specifically assess Bitcoin prices’ability to predict the volatility of US composite and sectoral stock indices using both in-sample and out-of-sample analyses over multiple forecast horizons,based on daily data from November 22,2017,to December,30,2021.The findings show that Bitcoin prices have significant predictive power for US stock volatility,with an inverse relationship between Bitcoin prices and stock sector volatility.Regardless of the stock sectors or number of forecast horizons,the model that includes Bitcoin prices consistently outperforms the benchmark historical average model.These findings are independent of the volatility measure used.Using Bitcoin prices as a predictor yields higher economic gains.These findings emphasize the importance and utility of tracking Bitcoin prices when forecasting the volatility of US stock sectors,which is important for practitioners and policymakers.
基金Supported by the Laoshan Laboratory(Nos.LSKJ 202203700,LSKJ 202203704,LSKJ 202204005)the National Natural Science Foundation of China(NSFC)(Nos.42076166,42130411)the NSFC Ship Time Sharing Project(No.42149901)。
文摘Meroplankton play a crucial role in both benthic and pelagic ecosystems.Existing quantitative research on estimating the quantities of meroplankton groups is both underrepresented and inaccurate.To investigate and evaluate the influence of varying mesh sizes(505 and 160μm)on the sampling efficiency of meroplankton,we conducted an examination using two commonly used plankton nets during the spring season in the Southern Yellow Sea(SYS).Our study revealed a total of 12 meroplankton groups,with 9 groups identified in the 505-μm mesh nets and 11 groups in the 160-μm mesh nets.The results demonstrated the superior collection efficiency of the 160-μm net compared to the 505-μm net across the majority of meroplankton groups.Furthermore,we focused on exploring the abundance,distribution patterns,and realized niches of meroplankton collected by the two mesh size nets,and observed that the distribution of meroplankton closely resembled the distribution of possible benthic adults in the SYS.Correlation analysis of the six dominant groups collected in the 160-μm mesh nets revealed that seawater temperature and salinity emerged as the key environmental factors driving variations in meroplankton abundance within the SYS.This study also found that a smaller mesh size net does not necessarily capture meroplankton more comprehensively.A comprehensive understanding of the ecological characteristics of meroplankton requires the combination of two types of nets for research.Our research significantly advances our understanding of the quantification,abundance,and distribution of meroplankton,serving as a valuable contribution to the broader landscape of detailed quantitative meroplankton studies.
文摘This study utilizes the Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroskedasticity (DCC-GARCH) model to investigate the dynamic relationship between Chinese and U.S. stock markets amid the COVID-19 pandemic. Initially, a univariate GARCH model is developed to derive residual sequences, which are then used to estimate the DCC model parameters. The research reveals a significant rise in the interconnection between the Chinese and U.S. stock markets during the pandemic. The S&P 500 index displayed higher sensitivity and greater volatility in response to the pandemic, whereas the CSI 300 index showed superior resilience and stability. Analysis and model estimation suggest that the market’s dependence on historical data has intensified and its sensitivity to recent shocks has heightened. Predictions from the model indicate increased market volatility during the pandemic. While the model is proficient in capturing market trends, there remains potential for enhancing the accuracy of specific volatility predictions. The study proposes recommendations for policymakers and investors, highlighting the importance of improved cooperation in international financial market regulation and investor education.
文摘Black-Scholes Model (B-SM) simulates the dynamics of financial market and contains instruments such as options and puts which are major indices requiring solution. B-SM is known to estimate the correct prices of European Stock options and establish the theoretical foundation for Option pricing. Therefore, this paper evaluates the Black-Schole model in simulating the European call in a cash flow in the dependent drift and focuses on obtaining analytic and then approximate solution for the model. The work also examines Fokker Planck Equation (FPE) and extracts the link between FPE and B-SM for non equilibrium systems. The B-SM is then solved via the Elzaki transform method (ETM). The computational procedures were obtained using MAPLE 18 with the solution provided in the form of convergent series.
基金This work was partially supported by the National Natural Science Foundation of China(Grant No.:72171192)the MOE Layout Foundation of Humanities and Social Sciences(Grant No.:22YJA790007)+1 种基金the Science and Technology Innovation Program of Hunan Province(Grant No.:2021RC3057)the Youth Innovation Team of Shanxi University,and the Fundamental Research Funds for the Central Universities.
文摘Since market uncertainty,or volatility,serves as a crucial gauge for assessing the traits of market fluctuations,the link between stock market volume and price continues to be a focal point of interest in finance.This study examines the dynamic,nonlinear correlations between Chinese stock volatility,trading volume,and return using a hybrid approach that combines the Markov-switching regime with the vector autoregressive model(MS-VAR).The empirical findings are as follows:(1)The Chinese stock market can be divided into three regional systems:steady downward,steady upward,and high volatility.The three states have similar frequencies of occurrence,and their corresponding stable probabilities are not high,indicating that the Chinese stock market is unstable.(2)Asymmetric dynamic relationships exist between market volatility,investment return,and trading volume.For different regimes,while the effect of trading volume on volatility and return appears to be insignificant,the impacts of volatility and return on trading volume are considerably strong.(3)A regime-dependent,contemporaneous correlation between volatility and return is observed,which also reflects the behavior of the Chinese stock market“chasing up and down”.However,a positive contemporaneous correlation always exists between volatility and trading volumes in different regimes,indicating that uncertainty in the Chinese stock market is closely related to information inflow.
基金supported by the Key Research and Development Program of Hunan Province of China(No.2022NK2036)Xiangxi Prefecture Science and Technology Plan Project"School-Local Integration"Special Project(No.2022001)the scientific research project of Hunan Provincial Department of Education(No.22B0520).
文摘Background:Ampelopsis grossedentata,vine tea,which is the tea alternative beverages in China.In vine tea processing,a large amount of broken tea is produced,which has low commercial value.Methods:This study investigates the influence of different extraction methods(room temperature water extraction,boiling water extraction,ultrasonic-assisted room temperature water extraction,and ultrasonic-assisted boiling water extraction,referred to as room temperature water extraction(RE),boiling water extraction(BE),ultrasonic assistance at room temperature water extraction(URE),and ultrasonic assistance in boiling water extraction(UBE))on the yield,dihydromyricetin(DMY)content,free amino acid composition,volatile aroma components,and antioxidant properties of vine tea extracts.Results:A notable influence of extraction temperature on the yield of vine tea extracts(P<0.05),with BE yielding the highest at 43.13±0.26%,higher than that of RE(34.29±0.81%).Ultrasound-assisted extraction significantly increased the DMY content of the extracts(P<0.05),whereas DMY content in the RE extracts was 59.94±1.70%,that of URE reached 66.14±2.78%.Analysis revealed 17 amino acids,with L-serine and aspartic acid being the most abundant in the extracts,nevertheless ultrasound-assisted extraction reduced total free amino acid content.Gas chromatography-mass spectrometry analysis demonstrated an increase in the diversity and quantity of compounds in the vine tea water extracts obtained through ultrasonic-assisted extraction.Specifically,69 and 68 volatile compounds were found in URE and UBE extracts,which were higher than the number found in RE and BE extracts.In vitro,antioxidant activity assessments revealed varying antioxidant capacities among different extraction methods,with RE exhibiting the highest DPPH scavenging rate,URE leading in ABTS•+free radical scavenging,and BE demonstrating superior ferric ion reducing antioxidant activity.Conclusion:The findings suggest that extraction methods significantly influence the chemical composition and antioxidant properties of vine tea extracts.Ultrasonic-assisted extraction proved instrumental in elevating the DMY content in vine tea extracts,thereby enriching its flavor profile while maintaining its antioxidant properties.
基金Project(71071166)supported by the National Natural Science Foundation of China
文摘The aim of the present work is to examine whether the price volatility of nonferrous metal futures can be used to predict the aggregate stock market returns in China. During a sample period from January of 2004 to December of 2011, empirical results show that the price volatility of basic nonferrous metals is a good predictor of value-weighted stock portfolio at various horizons in both in-sample and out-of-sample regressions. The predictive power of metal copper volatility is greater than that of aluminum. The results are robust to alternative measurements of variables and econometric approaches. After controlling several well-known macro pricing variables, the predictive power of copper volatility declines but remains statistically significant. Since the predictability exists only during our sample period, we conjecture that the stock market predictability by metal price volatility is partly driven by commodity financialization.
文摘文章选取上证综指5分钟收盘价序列高频数据,采用ACF拟合、多种损失函数、SPA检验和VaR回测检验对不同误差分布下的包含时变波动、异方差结构和加权已实现极差的Realized HAR GARCH模型进行研究。实证结果表明,新模型相比于以往模型更能够捕捉上证综指的波动特征,具有更好的波动率拟合和预测效果,且VaR度量效果更优。研究丰富了时变长记忆高频波动率模型,从时变波动和噪声异方差结构视角为投资者和监管机构进行风险管控提供参考。