Routh order reduction method of the relativistic Birkhoffian equations is studied. For a relativistic Birkhoffian system, the cyclic integrals can be found by using the perfect differential method. Through these cycli...Routh order reduction method of the relativistic Birkhoffian equations is studied. For a relativistic Birkhoffian system, the cyclic integrals can be found by using the perfect differential method. Through these cyclic integrals, the order of the system can be reduced. If the relativistic Birkhoffian system has a cyclic integral, then the Birkhoffian equations can be reduced at least by two degrees and the Birkhoffian form can be kept. The relations among the relativistic Birkhoffian mechanics, the relativistic Hamiltonian mechanics, and the relativistic Lagrangian mechanics are discussed, and the Routh order reduction method of the relativistic Lagrangian system is obtained. And an example is given to illustrate the application of the result.展开更多
As the solution of the two equations for determining the existing fifth order Stokes wave derived by Skjelbreia is complex and tedious, the two equations are simplified into one equation for determining d / L, i. e., ...As the solution of the two equations for determining the existing fifth order Stokes wave derived by Skjelbreia is complex and tedious, the two equations are simplified into one equation for determining d / L, i. e., f(H, T, d / L) = 0. According to this simplified method, three cases of the solution for the Skjelbreia equations have been found: one accurate solution; more than one accurate solution and no accurate solution (but there exists the optimum approximate solution in the area of satisfying Skjelbreia equations). As to the case of more than one accurate solution, the reasonable solution can be judged from the method of variational principle, by means elf which an optimum solution improved from the solution of Skjelbreia equations in the area of satisfying the original mathematical equations of non-vortex and nonlinear wave theory, i. e., the optimum fifth order Stokes wave, is given.展开更多
Starting with the governing equations in terms of displacements of 3D elastic media, the solutions to displacement components and their first derivatives are obtained by the application of a double Fourier transform a...Starting with the governing equations in terms of displacements of 3D elastic media, the solutions to displacement components and their first derivatives are obtained by the application of a double Fourier transform and an order reduction method based on the Cayley-Hamilton theorem. Combining the solutions and the constitutive equations which connect the displacements and stresses, the transfer matrix of a single soil layer is acquired. Then, the state space solution to multilayered elastic soils is further obtained by introducing the boundary conditions and continuity conditions between adjacent soil layers. The numerical analysis based on the present theory is carried out, and the vertical displacements of multilayered foundation with a weak and a hard underlying stratums are compared and discussed.展开更多
Nowadays,the modeling of systems may be quite large,even up to tens of thousands orders.In spite of the increasing computational powers,direct simulation of these large-scale systems may be impractical.Thus,to industr...Nowadays,the modeling of systems may be quite large,even up to tens of thousands orders.In spite of the increasing computational powers,direct simulation of these large-scale systems may be impractical.Thus,to industry requirements,analytically tractable and computationally cheap models must be designed.This is the essence task of Model Order Reduction(MOR).This article describes the basics of MOR optimization,various way of designing MOR,and gives the conclusion about existing methods.In addition,it proposed some heuristic footpath.展开更多
针对油浸式电力变压器瞬态温升计算效率过低的问题,该文提出本征正交分解-αATS(proper orthogonal decomposition-adaptive time stepping based onαfactor,POD-αATS)降阶自适应变步长瞬态计算方法。首先,推导变压器绕组瞬态温升计...针对油浸式电力变压器瞬态温升计算效率过低的问题,该文提出本征正交分解-αATS(proper orthogonal decomposition-adaptive time stepping based onαfactor,POD-αATS)降阶自适应变步长瞬态计算方法。首先,推导变压器绕组瞬态温升计算的有限元离散方程;其次,采用POD降阶算法改善传统瞬态计算中存在的条件数过大及方程阶数过高的问题;同时对于瞬态计算中的时间步长选择问题,提出适用于非线性问题的αATS变步长策略;然后,为验证方法的有效性,基于110 kV油浸式电力变压器绕组的基本结构建立二维八分区数值计算模型,同时将计算结果与基于110 kV绕组的温升实验结果进行对比。数值计算及实验结果表明,所提算法与全阶定步长算法在流场和温度场中的精度几乎相同,且流场计算效率提升约45倍,温度场计算效率提升约38倍,计算速度得到显著提高。这一点在温升实验中同样得到验证,说明该文所提算法的准确性、高效性及一定的工程实用性。展开更多
A numerical simulation for a model of wood drying process is considered. The model is given by a couple of nonlinear differential equations. One is a nonlinear parabolic equation and the other one is a nonlinear ordin...A numerical simulation for a model of wood drying process is considered. The model is given by a couple of nonlinear differential equations. One is a nonlinear parabolic equation and the other one is a nonlinear ordinary equation. A difference scheme is derived by the method of reduction of order. First, a new variable is introduced and the original problem is rewritten into a system of the first-order differential equations. Secondly, a difference scheme is constructed for the later problem. The solvability, stability and convergence of the difference scheme are proved by the energy method. The convergence order of the difference scheme is secondorder both in time and in space. A prior error estimate is put forward. The new variable is put aside to reduce the computational cost. A numerical example testifies the theoretical result.展开更多
In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the met...In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the method of variable coefficient dimensional expanding,the non-homogeneous ordinary differential equations(ODEs) are transformed into homogeneous ODEs.Then the interval is divided evenly,and the transfer matrix in every subinterval is worked out using the high order multiple perturbation method,and a set of algebraic equations is given in the form of matrix by the precise integration relation for each segment,which is worked out by the reduction method.Finally numerical examples are elaboratedd to validate the present method.展开更多
We study solutions of the nonlinear Schroedinger equation (NLSE) and higher-order nonlinear Sehroedinger equation (HONLSE) with variable coefficients. By considering all the higher-order effect of HONLSE as a new ...We study solutions of the nonlinear Schroedinger equation (NLSE) and higher-order nonlinear Sehroedinger equation (HONLSE) with variable coefficients. By considering all the higher-order effect of HONLSE as a new dependent variable, the NLSE and HONLSE can be changed into one equation. Using the generalized Lie group reduction method (CLGRM), the abundant solutions of NLSE and HONLSE are obtained.展开更多
This paper presents a precise method for solving singularly perturbed boundary-value problems with the boundary layer at one end. The method divides the interval evenly and gives a set of algebraic equations in a matr...This paper presents a precise method for solving singularly perturbed boundary-value problems with the boundary layer at one end. The method divides the interval evenly and gives a set of algebraic equations in a matrix form by the precise integration relationship of each segment. Substituting the boundary conditions into the algebraic equations, the coefficient matrix can be transformed to the block tridiagonal matrix. Considering the nature of the problem, an efficient reduction method is given for solving singular perturbation problems. Since the precise integration relationship introduces no discrete error in the discrete process, the present method has high precision. Numerical examples show the validity of the present method.展开更多
(FePt)85Cu15 nanoparticles were successfully prepared by alternate reduction of metal salts in aqueous medium.Detailed investigations on the correlation between the magnetic and structural properties of these nanopart...(FePt)85Cu15 nanoparticles were successfully prepared by alternate reduction of metal salts in aqueous medium.Detailed investigations on the correlation between the magnetic and structural properties of these nanoparticles are presented as a function of annealing temperature.Both the X-ray diffraction patterns and the magnetic hysteresis loop measurements show the existence of L10-FePt phase at a relative low annealing temperature.It is proved that the Cu additive and alternate reduction are very effective methods in reducing the ordering temperature of FePt nanoparticles.展开更多
Concrete filled steel tube structures have gained booming development in recent decades, especially in China. Simplified methods have been proposed in design codes, such as the Eurocode 4 (EC4) and the China engineeri...Concrete filled steel tube structures have gained booming development in recent decades, especially in China. Simplified methods have been proposed in design codes, such as the Eurocode 4 (EC4) and the China engineering and construction specification (CECS). In EC4, the confinement effect is reasonably related to slenderness and load eccentricity. The CECS method is much straight forward in that the slenderness ratio and load eccentricity are treated as independent reduction factors. To make use of the advantages of both the CECS and the EC4 methods, the CECS method is modified to consider the confinement effect associated with slenderness and load eccentricity. It is shown that the proposed method can predict well the ultimate load capacity of circular section concrete filled steel tube columns.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos, 10372053 and 10472040, the Natural Science Foundation of Hunan Province under Grant No. 03JJY3005, the Scientific Research Foundation of Eduction Burean of Hunan Province under Grant No. 02C033 and the 0utstanding Young Talents Training Fund of Liaoning Province under Grant No. 3040005
文摘Routh order reduction method of the relativistic Birkhoffian equations is studied. For a relativistic Birkhoffian system, the cyclic integrals can be found by using the perfect differential method. Through these cyclic integrals, the order of the system can be reduced. If the relativistic Birkhoffian system has a cyclic integral, then the Birkhoffian equations can be reduced at least by two degrees and the Birkhoffian form can be kept. The relations among the relativistic Birkhoffian mechanics, the relativistic Hamiltonian mechanics, and the relativistic Lagrangian mechanics are discussed, and the Routh order reduction method of the relativistic Lagrangian system is obtained. And an example is given to illustrate the application of the result.
文摘As the solution of the two equations for determining the existing fifth order Stokes wave derived by Skjelbreia is complex and tedious, the two equations are simplified into one equation for determining d / L, i. e., f(H, T, d / L) = 0. According to this simplified method, three cases of the solution for the Skjelbreia equations have been found: one accurate solution; more than one accurate solution and no accurate solution (but there exists the optimum approximate solution in the area of satisfying Skjelbreia equations). As to the case of more than one accurate solution, the reasonable solution can be judged from the method of variational principle, by means elf which an optimum solution improved from the solution of Skjelbreia equations in the area of satisfying the original mathematical equations of non-vortex and nonlinear wave theory, i. e., the optimum fifth order Stokes wave, is given.
文摘Starting with the governing equations in terms of displacements of 3D elastic media, the solutions to displacement components and their first derivatives are obtained by the application of a double Fourier transform and an order reduction method based on the Cayley-Hamilton theorem. Combining the solutions and the constitutive equations which connect the displacements and stresses, the transfer matrix of a single soil layer is acquired. Then, the state space solution to multilayered elastic soils is further obtained by introducing the boundary conditions and continuity conditions between adjacent soil layers. The numerical analysis based on the present theory is carried out, and the vertical displacements of multilayered foundation with a weak and a hard underlying stratums are compared and discussed.
文摘Nowadays,the modeling of systems may be quite large,even up to tens of thousands orders.In spite of the increasing computational powers,direct simulation of these large-scale systems may be impractical.Thus,to industry requirements,analytically tractable and computationally cheap models must be designed.This is the essence task of Model Order Reduction(MOR).This article describes the basics of MOR optimization,various way of designing MOR,and gives the conclusion about existing methods.In addition,it proposed some heuristic footpath.
文摘针对油浸式电力变压器瞬态温升计算效率过低的问题,该文提出本征正交分解-αATS(proper orthogonal decomposition-adaptive time stepping based onαfactor,POD-αATS)降阶自适应变步长瞬态计算方法。首先,推导变压器绕组瞬态温升计算的有限元离散方程;其次,采用POD降阶算法改善传统瞬态计算中存在的条件数过大及方程阶数过高的问题;同时对于瞬态计算中的时间步长选择问题,提出适用于非线性问题的αATS变步长策略;然后,为验证方法的有效性,基于110 kV油浸式电力变压器绕组的基本结构建立二维八分区数值计算模型,同时将计算结果与基于110 kV绕组的温升实验结果进行对比。数值计算及实验结果表明,所提算法与全阶定步长算法在流场和温度场中的精度几乎相同,且流场计算效率提升约45倍,温度场计算效率提升约38倍,计算速度得到显著提高。这一点在温升实验中同样得到验证,说明该文所提算法的准确性、高效性及一定的工程实用性。
基金The National Natural Science Foundation of China (No10471023)
文摘A numerical simulation for a model of wood drying process is considered. The model is given by a couple of nonlinear differential equations. One is a nonlinear parabolic equation and the other one is a nonlinear ordinary equation. A difference scheme is derived by the method of reduction of order. First, a new variable is introduced and the original problem is rewritten into a system of the first-order differential equations. Secondly, a difference scheme is constructed for the later problem. The solvability, stability and convergence of the difference scheme are proved by the energy method. The convergence order of the difference scheme is secondorder both in time and in space. A prior error estimate is put forward. The new variable is put aside to reduce the computational cost. A numerical example testifies the theoretical result.
基金supported by the National Natural Science Foundation of China (11132004 and 51078145)the Natural Science Foundation of Guangdong Province (9251064101000016)
文摘In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the method of variable coefficient dimensional expanding,the non-homogeneous ordinary differential equations(ODEs) are transformed into homogeneous ODEs.Then the interval is divided evenly,and the transfer matrix in every subinterval is worked out using the high order multiple perturbation method,and a set of algebraic equations is given in the form of matrix by the precise integration relation for each segment,which is worked out by the reduction method.Finally numerical examples are elaboratedd to validate the present method.
基金National Natural Science Foundation of China under Grant No.10675065
文摘We study solutions of the nonlinear Schroedinger equation (NLSE) and higher-order nonlinear Sehroedinger equation (HONLSE) with variable coefficients. By considering all the higher-order effect of HONLSE as a new dependent variable, the NLSE and HONLSE can be changed into one equation. Using the generalized Lie group reduction method (CLGRM), the abundant solutions of NLSE and HONLSE are obtained.
基金Project supported by the National Natural Science Foundation of China(No.10672194)the China-Russia Cooperative Project(the National Natural Science Foundation of China and the Russian Foundation for Basic Research)(No.10811120012)
文摘This paper presents a precise method for solving singularly perturbed boundary-value problems with the boundary layer at one end. The method divides the interval evenly and gives a set of algebraic equations in a matrix form by the precise integration relationship of each segment. Substituting the boundary conditions into the algebraic equations, the coefficient matrix can be transformed to the block tridiagonal matrix. Considering the nature of the problem, an efficient reduction method is given for solving singular perturbation problems. Since the precise integration relationship introduces no discrete error in the discrete process, the present method has high precision. Numerical examples show the validity of the present method.
基金supported by the National Key Research and Development Program(2016YFB1100101)the National Natural Science Foundation of China(51471135)+1 种基金Shaanxi Science and Technology Program(2017KW-ZD-07)Shenzhen Fundamental Research Program.
文摘(FePt)85Cu15 nanoparticles were successfully prepared by alternate reduction of metal salts in aqueous medium.Detailed investigations on the correlation between the magnetic and structural properties of these nanoparticles are presented as a function of annealing temperature.Both the X-ray diffraction patterns and the magnetic hysteresis loop measurements show the existence of L10-FePt phase at a relative low annealing temperature.It is proved that the Cu additive and alternate reduction are very effective methods in reducing the ordering temperature of FePt nanoparticles.
文摘Concrete filled steel tube structures have gained booming development in recent decades, especially in China. Simplified methods have been proposed in design codes, such as the Eurocode 4 (EC4) and the China engineering and construction specification (CECS). In EC4, the confinement effect is reasonably related to slenderness and load eccentricity. The CECS method is much straight forward in that the slenderness ratio and load eccentricity are treated as independent reduction factors. To make use of the advantages of both the CECS and the EC4 methods, the CECS method is modified to consider the confinement effect associated with slenderness and load eccentricity. It is shown that the proposed method can predict well the ultimate load capacity of circular section concrete filled steel tube columns.