This work illustrates the innovative results obtained by applying the recently developed the 2<sup>nd</sup>-order predictive modeling methodology called “2<sup>nd</sup>- BERRU-PM”, where the ...This work illustrates the innovative results obtained by applying the recently developed the 2<sup>nd</sup>-order predictive modeling methodology called “2<sup>nd</sup>- BERRU-PM”, where the acronym BERRU denotes “best-estimate results with reduced uncertainties” and “PM” denotes “predictive modeling.” The physical system selected for this illustrative application is a polyethylene-reflected plutonium (acronym: PERP) OECD/NEA reactor physics benchmark. This benchmark is modeled using the neutron transport Boltzmann equation (involving 21,976 uncertain parameters), the solution of which is representative of “large-scale computations.” The results obtained in this work confirm the fact that the 2<sup>nd</sup>-BERRU-PM methodology predicts best-estimate results that fall in between the corresponding computed and measured values, while reducing the predicted standard deviations of the predicted results to values smaller than either the experimentally measured or the computed values of the respective standard deviations. The obtained results also indicate that 2<sup>nd</sup>-order response sensitivities must always be included to quantify the need for including (or not) the 3<sup>rd</sup>- and/or 4<sup>th</sup>-order sensitivities. When the parameters are known with high precision, the contributions of the higher-order sensitivities diminish with increasing order, so that the inclusion of the 1<sup>st</sup>- and 2<sup>nd</sup>-order sensitivities may suffice for obtaining accurate predicted best- estimate response values and best-estimate standard deviations. On the other hand, when the parameters’ standard deviations are sufficiently large to approach (or be outside of) the radius of convergence of the multivariate Taylor-series which represents the response in the phase-space of model parameters, the contributions stemming from the 3<sup>rd</sup>- and even 4<sup>th</sup>-order sensitivities are necessary to ensure consistency between the computed and measured response. In such cases, the use of only the 1<sup>st</sup>-order sensitivities erroneously indicates that the computed results are inconsistent with the respective measured response. Ongoing research aims at extending the 2<sup>nd</sup>-BERRU-PM methodology to fourth-order, thus enabling the computation of third-order response correlations (skewness) and fourth-order response correlations (kurtosis).展开更多
Global seismicity catalogs are sufficient for characterizing double seismic zones (DSZs) in subducting slab and facilitate to estimate layer separation without inconsistent uncertainties as local catalogs. Previous ...Global seismicity catalogs are sufficient for characterizing double seismic zones (DSZs) in subducting slab and facilitate to estimate layer separation without inconsistent uncertainties as local catalogs. Previous studies have shown the correlation between DSZs layer separation and plate age while correlation for those younger than -60 Ma is suspicious. The lacking of DSZs with layer separation less than 10 km further makes it difficult to precisely estimate such correlation. Thus, we incorporate eight DSZs data determined through local seismicity into globally-determined dataset and reexamine such correlation. The best fitting results show that both a linear model and a square root of plate age can mathematically fit the layer separation well. However, it is difficult to distinguish these two models when plate age is greater than -20 Ma since their difference is less than 2 km. However, if extrapolation is possible, both models should provide physical information that DSZs will not form if there is no subducting lithosphere. As a result, the DSZs cannot be produced until the oceanic lithospheric age becomes greater than 0.9 Ma in the square root model while the linear model gives a misleading result. As such the square root model demonstrates the relationship physically better than the linear one, it still needs further test in the future with more available data, nevertheless, our study might also provide evidence for the suggestion that the plate age is a primary control factor of the DSZs geometry as well as the subducting process which disregards any local tectonic stresses.展开更多
The second molar dislocation is more common clinically.To investigate the related factors of the second permanent molar dislocation,and provide reference for the clinical diagnosis and treatment of orthodontics.From t...The second molar dislocation is more common clinically.To investigate the related factors of the second permanent molar dislocation,and provide reference for the clinical diagnosis and treatment of orthodontics.From the current clinical research,the clinical methods of orthodontic erect secondary molars are also diverse and clinical.The narrower first molar alveolar arch width,smaller ANB angle,and crowded maxillary posterior segment arch are the factors that cause the maxillary second permanent molar dislocation.The narrow alveolar arch width,the smaller SNB angle,the larger ANB angle,and the crowded lower mandibular arch are the factors leading to the dislocation of the mandibular second permanent molar.In addition,for the second mandibular molar malposition,it is particularly important to select the corrective treatment plan.It is especially important to improve the treatment.展开更多
文摘This work illustrates the innovative results obtained by applying the recently developed the 2<sup>nd</sup>-order predictive modeling methodology called “2<sup>nd</sup>- BERRU-PM”, where the acronym BERRU denotes “best-estimate results with reduced uncertainties” and “PM” denotes “predictive modeling.” The physical system selected for this illustrative application is a polyethylene-reflected plutonium (acronym: PERP) OECD/NEA reactor physics benchmark. This benchmark is modeled using the neutron transport Boltzmann equation (involving 21,976 uncertain parameters), the solution of which is representative of “large-scale computations.” The results obtained in this work confirm the fact that the 2<sup>nd</sup>-BERRU-PM methodology predicts best-estimate results that fall in between the corresponding computed and measured values, while reducing the predicted standard deviations of the predicted results to values smaller than either the experimentally measured or the computed values of the respective standard deviations. The obtained results also indicate that 2<sup>nd</sup>-order response sensitivities must always be included to quantify the need for including (or not) the 3<sup>rd</sup>- and/or 4<sup>th</sup>-order sensitivities. When the parameters are known with high precision, the contributions of the higher-order sensitivities diminish with increasing order, so that the inclusion of the 1<sup>st</sup>- and 2<sup>nd</sup>-order sensitivities may suffice for obtaining accurate predicted best- estimate response values and best-estimate standard deviations. On the other hand, when the parameters’ standard deviations are sufficiently large to approach (or be outside of) the radius of convergence of the multivariate Taylor-series which represents the response in the phase-space of model parameters, the contributions stemming from the 3<sup>rd</sup>- and even 4<sup>th</sup>-order sensitivities are necessary to ensure consistency between the computed and measured response. In such cases, the use of only the 1<sup>st</sup>-order sensitivities erroneously indicates that the computed results are inconsistent with the respective measured response. Ongoing research aims at extending the 2<sup>nd</sup>-BERRU-PM methodology to fourth-order, thus enabling the computation of third-order response correlations (skewness) and fourth-order response correlations (kurtosis).
基金supported by the Natural Science Foundation of Hubei Province(2011CDC028)the Key Project of Hubei Provincial Department of Education(D20122701)+1 种基金the Excellent Youth Project of Hubei Provincial Department of Education(Q20122709)the Doctorial Foundation of Huanggang Normal University(2011CD292,08CD158)
基金supported by the National Natural Science Foundation of China(grant Nos.40874047 and 40574047)
文摘Global seismicity catalogs are sufficient for characterizing double seismic zones (DSZs) in subducting slab and facilitate to estimate layer separation without inconsistent uncertainties as local catalogs. Previous studies have shown the correlation between DSZs layer separation and plate age while correlation for those younger than -60 Ma is suspicious. The lacking of DSZs with layer separation less than 10 km further makes it difficult to precisely estimate such correlation. Thus, we incorporate eight DSZs data determined through local seismicity into globally-determined dataset and reexamine such correlation. The best fitting results show that both a linear model and a square root of plate age can mathematically fit the layer separation well. However, it is difficult to distinguish these two models when plate age is greater than -20 Ma since their difference is less than 2 km. However, if extrapolation is possible, both models should provide physical information that DSZs will not form if there is no subducting lithosphere. As a result, the DSZs cannot be produced until the oceanic lithospheric age becomes greater than 0.9 Ma in the square root model while the linear model gives a misleading result. As such the square root model demonstrates the relationship physically better than the linear one, it still needs further test in the future with more available data, nevertheless, our study might also provide evidence for the suggestion that the plate age is a primary control factor of the DSZs geometry as well as the subducting process which disregards any local tectonic stresses.
文摘The second molar dislocation is more common clinically.To investigate the related factors of the second permanent molar dislocation,and provide reference for the clinical diagnosis and treatment of orthodontics.From the current clinical research,the clinical methods of orthodontic erect secondary molars are also diverse and clinical.The narrower first molar alveolar arch width,smaller ANB angle,and crowded maxillary posterior segment arch are the factors that cause the maxillary second permanent molar dislocation.The narrow alveolar arch width,the smaller SNB angle,the larger ANB angle,and the crowded lower mandibular arch are the factors leading to the dislocation of the mandibular second permanent molar.In addition,for the second mandibular molar malposition,it is particularly important to select the corrective treatment plan.It is especially important to improve the treatment.