Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabrica...Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabricate multifunctional and environmentally friendly materials,which can be stably applied to purify the actual complicated wastewater.Here,a Ag/Ag/α-Fe_(2)O_(3) heterostructure anchored copper mesh was intentionally synthesized using a facile two-step hydrothermal method.The resultant mesh with superhydrophilicity and underwater superoleophobicity was capable of separating various oil/water mixtures with superior separation efficiency and high permeationflux driven by gravity.Benefiting from the joint effects of the smaller band gap of Ag/α-Fe_(2)O_(3) heterojunction,inherent antibacterial capacity of Ag/α-Fe_(2)O_(3) and Ag nanoparticles,favorable conductive substrate,as well as the hierarchical structure with superwettability,such mesh presented remarkably enhanced degradation capability toward organic dyes under visible light irradiation and antibacterial activity against both Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)compared with the pure Ag/α-Fe_(2)O_(3) coated mesh.Impressively,the mesh exhibited bifunctional water purification performance,in which organic dyes were eliminated simultaneously from water during oil/water separation in onefiltration process.More importantly,this mesh behaved exceptional chemical resistance,mechanical stability and long-term reusability.Therefore,this material with multifunctional integration may hold promising potential for steady water purification in practice.展开更多
Increasing both clean water and green energy demands for survival and development are the grand challenges of our age.Here,we successfully fabricate a novel multifunctional 3D graphene-based catalytic membrane(3D-GCM)...Increasing both clean water and green energy demands for survival and development are the grand challenges of our age.Here,we successfully fabricate a novel multifunctional 3D graphene-based catalytic membrane(3D-GCM)with active metal nanoparticles(AMNs)loading for simultaneously obtaining the water purification and clean energy generation,via a“green”one-step laser scribing technology.The as-prepared 3D-GCM shows high porosity and uniform distribution with AMNs,which exhibits high permeated fluxes(over 100 L m^(−2) h^(−1))and versatile super-adsorption capacities for the removal of tricky organic pollutants from wastewater under ultra-low pressure-driving(0.1 bar).After adsorption saturating,the AMNs in 3D-GCM actuates the advanced oxidization process to self-clean the fouled membrane via the catalysis,and restores the adsorption capacity well for the next time membrane separation.Most importantly,the 3D-GCM with the welding of laser scribing overcomes the lateral shear force damaging during the long-term separation.Moreover,the 3D-GCM could emit plentiful of hot electrons from AMNs under light irradiation,realizing the membrane catalytic hydrolysis reactions for hydrogen energy generation.This“green”precision manufacturing with laser scribing technology provides a feasible technology to fabricate high-efficient and robust 3D-GCM microreactor in the tricky wastewater purification and sustainable clean energy production as well.展开更多
[Objective] To study the purification effect of plant community on wetland water environment in Hongze Lake, and to provide references to the ecological restoration of this area. [Methed] The typical lakeside zone of ...[Objective] To study the purification effect of plant community on wetland water environment in Hongze Lake, and to provide references to the ecological restoration of this area. [Methed] The typical lakeside zone of Hongze Lake Wetland National Nature Reserve was taken as the study area. Through the field survey based on environmental characteristics of aquatic areas and non-aquatic areas, combined with laboratory test, the content changes of nutrients (N and P), COD (chemical oxygen demand) and SD (transparency) levels in the water body of lake wetland were measured; the purification effect of the lake wetland ecosystem in the growth process of aquatic vegetation was quantitatively analyzed, and possible influ- encing factors were discussed. [Result] Aquatic vegetation could remove the TN, TP, COD, Chla in wetland water environment and had obvious effects on the changes of SD content. Competition between aquatic plants can inhibit the growth of algae and relieve the eutrophication of water body. [Conclusion] This study provided theoretical basis for ecological restoration and enhancement of self-purification capability in the lakeside zone of Hongze Lake.展开更多
As an effective, efficient, and economic approach for water purification, adsorbents and adsorption processes have been widely studied and applied in different aspects for a long time. In the recent years, a lot of no...As an effective, efficient, and economic approach for water purification, adsorbents and adsorption processes have been widely studied and applied in different aspects for a long time. In the recent years, a lot of novel adsorption processes have been developed for enhancing the efficiency of removing the organic and inorganic contaminants from water. This article reviews some new adsorbents and advanced adsorption methods that specialize in their compositions, structures, functions, and characteristics used in water treatment. The review emphasizes adsorption/catalytic oxidation process, adsorption/catalytic reduction process, adsorption coupled with redox process, biomimetic sorbent and its sorption behaviors of POPs, and modified adsorbents and their water purification efficiency.展开更多
Catalytic technologies have been paid increasing attention in refractory pollutants abatement due to its practical and potential values in water purification. As effective and efficient approaches for water purificati...Catalytic technologies have been paid increasing attention in refractory pollutants abatement due to its practical and potential values in water purification. As effective and efficient approaches for water purification, Fenton's reagent, ozonation, electrochemical and photocatalytic methods have been widely studied and applied in different aspects and have been reviewed by several articles. In recent years, some novel catalytic processes based on above processes have been developed for enhancing the efficiency of removing the organics from water. This review emphasized on the recent development of heterogeneous catalytic ozonation, electrocatalysis in respect of novel electrodes and electro-Fenton method, photoelectrocatalysis process and photoelectron-Fenton in water purification. It was also an attempt to propose general ideas about mechanism and principle enhancing the catalytic efficiency for the degradation and the mineralization of organics in water.展开更多
Visible-light-responsive ternary metal tungstate(MWO_4) photocatalysts are being increasingly investigated for energy conversion and environmental purification applications owing to their striking features, including ...Visible-light-responsive ternary metal tungstate(MWO_4) photocatalysts are being increasingly investigated for energy conversion and environmental purification applications owing to their striking features, including low cost,eco-friendliness, and high stability under acidic and oxidative conditions. However, rapid recombination of photoinduced electron–hole pairs and a narrow light response range to the solar spectrum lead to low photocatalytic activity of MWO_4-based materials, thus significantly hampering their wide usage in practice. To enable their widespread practical usage, significant efforts have been devoted, by developing new concepts and innovative strategies. In this review, we aim to provide an integrated overview of the fundamentals and recent progress of MWO_4-based photocatalysts. Furthermore, different strategies, including morphological control, surface modification, heteroatom doping, and heterojunction fabrication, which are employed to promote the photocatalyticactivities of MWO_4-based materials, are systematically summarized and discussed. Finally, existing challenges and a future perspective are also provided to shed light on the development of highly efficient MWO_4-based photocatalysts.展开更多
A sintering technology for preparing porous materials from sea bottom sediments was developed for use in water purification. The purpose of the present study was to develop methods for converting the sea bottom sedime...A sintering technology for preparing porous materials from sea bottom sediments was developed for use in water purification. The purpose of the present study was to develop methods for converting the sea bottom sediments dredged from Ago Bay into value-added recycled products. The sintered products fabricated at 400℃ were found to be very effective adsorbents for the removal of heavy metals.展开更多
To find a new way treating the wastewater from biogas reactors in a pig farm, vegetated floating bed was built for observing the water-purifying capability of water spinach (Ipomoea aquatic) planted on the water surfa...To find a new way treating the wastewater from biogas reactors in a pig farm, vegetated floating bed was built for observing the water-purifying capability of water spinach (Ipomoea aquatic) planted on the water surface. Experiments were carried out to record the growth and biomass accumulation of water spinach and its effect on purification of biogas wastewater. The results show that the water which mixed with biogas wastewater has been purified significantly by water spinach on the floating bed. During its growth season within four months, the overall length of water spinach reached 199 ± 35 cm, while its root length reached 63 ± 28.6 cm. The average weight of individual fresh plant is of 1285 ± 619.7 g. Meanwhile, the concentration of total nitrogen (TN) in water under the floating bed decreased from 8.9 ± 0.062 mg·L-1 to 0.5 ± 0.011 mg·L-1;the concentration of total phosphorus (TP) decreased from 4.4 ± 0.236 mg·L-1 to 0.92 ± 0.024 mg·L-1;the concentration of chemical oxygen demand (COD) decreased from 87.3 ± 6.68 mg·L-1 to 0.74 ± 0.46 mg·L-1. It suggests that the water spinach removed more than 90% of pollutants in terms of TN, TP, and COD from the water. Results show that the vegetated floating bed technique is a feasible way to dispose the biogas slurry.展开更多
Rural landscape is not only a natural landscape,but also a cultural landscape.The improvement of rural environment in Lushi County is carried out under the background of“Building Beautiful Villages”.Through the plan...Rural landscape is not only a natural landscape,but also a cultural landscape.The improvement of rural environment in Lushi County is carried out under the background of“Building Beautiful Villages”.Through the plan of environmental improvement,the appearance of villages in rural areas will be significantly improved,and the gap between urban and rural areas will be shortened.This research addresses the problems of scarce water resources,imperfect rainwater collection facilities,and increased environmental pollution in rural areas,and explores a flexible,effective,and integrated landscape ecological water treatment system that integrates with natural ecosystems.The practice has shown that the flexible combination of different technical measures according to local conditions and the construction of ecological water self-circulation and self-purification systems can reduce maintenance costs and achieve sustainable landscape.The virtuous cycle of the revetment’s micro-ecology greatly improves the environmental carrying capacity of the landscape.Reasonable water management system is more flexible in dealing with unexpected problems.The thesis proposes landscape design strategies for water circulation and water purification in rural areas,and applies them to actual design cases.It attempts to introduce a combined treatment system to achieve a more diverse landscape concept and further explore the healthy and sustainable development of rural water environment.展开更多
Along with the environmental pollution, the scarcity of clean water seriously threatens the sustainable development of human society.Recently, the rapid development of solar evaporators has injected new vitality into ...Along with the environmental pollution, the scarcity of clean water seriously threatens the sustainable development of human society.Recently, the rapid development of solar evaporators has injected new vitality into the field of water purification. However, the industry faces a considerable challenge of achieving comprehensive purification of ions, especially the efficient removal of mercury ions. In this work, we introduce an ideal mercury-removal platform based on facilely and cost-effectively synthesized polysulfide nanoparticles(PSNs). Further development of PSN-functionalized reduced graphene oxide(PSN-rGO) aerogel evaporator results in achieving a high evaporation rate of 1.55 kg m^(-2)h^(-1)with energy efficiency of 90.8% under 1 sun. With the merits of interconnected porous structure and adsorption ability, the photothermal aerogel presents overall purification of heavy metal ions from wastewater. During solar desalination, salt ions can be rejected with long-term stability. Compared with traditional water purification technologies, this highly efficient solar evaporator provides a new practical method to utilize clean energy for clean water production.展开更多
Objective:To identify the prevalence of Acanthamoeba in drinking water treatment plants during the course of the purification processes.Methods:Samples were taken from two drinking water purification plants and monito...Objective:To identify the prevalence of Acanthamoeba in drinking water treatment plants during the course of the purification processes.Methods:Samples were taken from two drinking water purification plants and monitored for the presence of Acanthamoeba in order to estimate the removal capacity of treatment methods employed. Water samples were collected at each step in the purification,during the one year survey,and analysed for the presence of Acanthamoeba spp.by plating on bacterial-seeded plates.Results:The results showed that amoebae were present in surface raw waters in 100%of the samples tested.Acanthamoeba spp.were isolated from 71%and 57%of the water samples collected from post flat-bottom clarifier 1 and post-sedimentation plant respectively.Considering the outflow drinking waters,the removal capacity was 100%in both purification plants monitored.The occurrence of Acanthamoeba was not associated with seasonality.Conclusion: These findings confirm that water purification plants employing methods of flocculation,sedimentation,and filtration in combination with activated charcoal filtration,ozonisation and chlorination exhibited sufficient Acanthamoeba removal capacity and the presence of amoebae in the tap water may be due to older plumbing,water storage tanks,tap water hygiene,and/or environmental settings.展开更多
Purification of water contaminated by toxic organic compounds at low and very low concentration is a quite interesting challenge from both the technical and the economical point of view. In fact, the direct destructio...Purification of water contaminated by toxic organic compounds at low and very low concentration is a quite interesting challenge from both the technical and the economical point of view. In fact, the direct destruction of organic compounds dissolved in very diluted aqueous solution is very costly and hardly achievable. To overcome this problems it was studied and developed a new water purification process which is made of three steps: a) removal of the diluted and toxic polluting compounds by adsorption on activated carbon beds operating at ambient P ant T;b) regeneration of the exhausted carbon bed with supercritical water in order to obtain a mixture of water and polluting compounds signifi-cantly more concentrated than the contaminated liquid water;c) destruction of the toxic compounds in a continuous Supercritical Water Oxidation Reactor. Step a) was studied at laboratory scale in order to obtain all the required information for modeling the adsorption operation;step b) was modeled by using literature experimental data and, step c) was validated at pilot plant scale. In all the above mentioned steps, phenol was used as representative of polluting compounds.展开更多
Water purification is required for environmental protection. In this paper, we propose and demonstrate a rapid, effective and low-cost approach to collect numerous impurities(microparticles) in water on the basis of...Water purification is required for environmental protection. In this paper, we propose and demonstrate a rapid, effective and low-cost approach to collect numerous impurities(microparticles) in water on the basis of laser-induced thermal convection. We introduce a heat source by using a fiber tip, which is fabricated into a non-adiabatic-tapered shape. In order to improve the laser power absorption efficiency, we coat a gold film with a thickness of 300 nm on the fiber tip. Due to absorption, the laser power transferred from the fiber to the water results in thermal convection. The forces generated from the thermal convection drive the microparticles to move towards the fiber tip, thereby performing microparticle collection and achieving water purification. Laser-induced thermal convection provides a simple, high-efficiency and low-cost method of collecting microparticles, which is a suitable and convenient for local water purification.展开更多
[ Objective] The study aims to resolve water resource problem availably. [ Method] On the basis of wetland self-purification capacity, Yanshan River water was purified by Xixi Wetland, and the feasibility of using tre...[ Objective] The study aims to resolve water resource problem availably. [ Method] On the basis of wetland self-purification capacity, Yanshan River water was purified by Xixi Wetland, and the feasibility of using treated Yanshan River water for urban greening and watering road was analyzed. [Result] Compared with direct utilization of tap water, it is more economic to recycle Yanshan River water purified by Xixi Wetland for urban greening and watering read, with obvious economic, ecological and social benefits, so it is an effective method to address shortage of water resources and is worth spreading. [ Conclusion] It is feasible to use Yanshan River water purified by Xixi Wetland for urban greening and watering read.展开更多
Large deposits of impure kaolins exist in Jordan and many parts of the world;geoplymers can reduce environmental impacts and have multi-application in many fields, such as water purification, waste treatment, fire pro...Large deposits of impure kaolins exist in Jordan and many parts of the world;geoplymers can reduce environmental impacts and have multi-application in many fields, such as water purification, waste treatment, fire proof construction, etc. The aim of this research is to investigate the use of alkali activated zeolitic tuff and low purity metakaolin as precursors for the production of functional geoplymers exhibiting proper mechanical properties and high potential for water storage and decontamination of polluted solutions. The results confirmed that this type of geopolymers showed superior mechanical characteristics and higher adsorption capacity towards heavy metals such as Cu(II) ions, which was similar to natural zeolite. X-ray diffraction analysis showed that phillipsite, a major zeolite mineral, disappeared upon geopolymerization, while scanning electron microscopy analysis showed that geopolymers exhibit a porous matrix of nano-particles. The geopolymers have also displayed high compressive strength and tensile bending strength of about 7.8 MPa and 45 MPa respectively, compared to reference geopolymers. This functional-geopolymers indicate that they are efficient, cost effective and have a potential for number of applications including construction, water storage and wastewater treatment.展开更多
[ Objective ] The aim was to study the influence of filamentous algae on the process of water ecological purification. [ Method ] The occurrence mechanism of filamentous algae and its ecological system were summarized...[ Objective ] The aim was to study the influence of filamentous algae on the process of water ecological purification. [ Method ] The occurrence mechanism of filamentous algae and its ecological system were summarized and analyzed. Considering the ecological purification in north- ern Jiangsu, the occurrence and prevention of filamentous algae in water, the method to prevent filamentous algae in polluted water was discussed. [ Result] The results showed that by measures of improving planting density, regular harvesting, and water flow state control before the filamentous algae blooming period, together with improving local pH value, light interference and ecological control during the blooming period, can effectively control the filamentous algae blooming. [ Condusion] The study of the happening mechanism of filamentous algae provided theoretical references and the technical basis in the work of filamentous algae prevention and control.展开更多
Under artificially simulated conditions, the water purification effects of Lythrum salicaria, Typha minima, Scirpus validus, Iris wilsonii and their configurations were studied. The results showed that various aquatic...Under artificially simulated conditions, the water purification effects of Lythrum salicaria, Typha minima, Scirpus validus, Iris wilsonii and their configurations were studied. The results showed that various aquatic plants and their configurations showed purification effects for total nitrogen(TN), nitrate nitrogen(NO_3^-), total phosphorus(TP), orthophosphate(PO_4^(3-)) and chemical oxygen demand(COD) in water body, and the purification effects of aquatic plant configurations were better than those of single ones. Regression analysis was conducted for dynamics of various water quality indicators. The removal rates of TN and COD within 50 d by the combination of L. salicaria and I. wilsonii were 73.83% and 77.4%, respectively, with the best purification effect; the removal rate of NO_3^- within 20 d by the combination of S. validus and I. wilsonii was 89.41%; and the combination of S. validus and I. wilsonii showed the best removal effect for TP and PO43-, of which the 50-d removal rates were 88.98% and 92.39%, respectively. Reasonable choice of local aquatic plants and their optimal combinations can be applied in the improvement of water quality of rivers.展开更多
The two-dimensional nonlinear shallow water equations in the presence of Coriolis force and bottom topography are solved numerically using the fractional steps method. The fractional steps method consists of splitting...The two-dimensional nonlinear shallow water equations in the presence of Coriolis force and bottom topography are solved numerically using the fractional steps method. The fractional steps method consists of splitting the multi-dimensional matrix inversion problem into an equivalent one dimensional problem which is successively integrated in every direction along the characteristics using the Riemann invariant associated with the cubic spline interpolation. The height and the velocity field of the shallow water equations over irregular bottom are discretized on a fixed Eulerian grid and time-stepped using the fractional steps method. Effects of the Coriolis force and the bottom topography for particular initial flows on the velocity components and the free surface elevation have been studied and the results are plotted.展开更多
Preliminary results of our study related to simultaneous waste water purification by photocatalytic degradation of organic impurity (Methylene Blue dye) and its effects on seed germination are presented here. It is in...Preliminary results of our study related to simultaneous waste water purification by photocatalytic degradation of organic impurity (Methylene Blue dye) and its effects on seed germination are presented here. It is interesting and important to know that complete degradation of the dye occurs within 2 hours and does not adversely affect the seed germination process. It is concluded that waste water purification by photocatalysis and seed germination (agriculture) can be carried out simultaneously, opening a way for advanced agriculture.展开更多
[Objectives]This study was conducted to investigate the purification effects of two common large seaweeds on the tail water of prawn farming in greenhouses,and to determine the best culture density of seaweeds.[Method...[Objectives]This study was conducted to investigate the purification effects of two common large seaweeds on the tail water of prawn farming in greenhouses,and to determine the best culture density of seaweeds.[Methods]Two large seaweed species,Gracilaria lichevoides and Ulva lactuca,were selected to set four culture densities of 0.5,2,4 g/L and a blank control group,respectively.The seaweeds were cultured in 100 L white polyethylene buckets,each of which contained 50 L of tail water from prawn culture.[Results]After 5 d,the nutrient removal rates of the two seaweeds were directly proportional to the density.There was no significant difference in NH_(4)-N removal rate between G.lichevoides and U.lactuca(P>0.05)by two-way analysis of variance,and the NH_(4)-N removal rate of the latter was higher.The removal rates of NO_(3)-N,TN and TP by G.lichevoides were significantly higher than those by U.lactuca(P<0.05).The specific growth rates of seaweeds were negatively correlated with their culture densities.The specific growth rates of G.lichevoides were 5.73%,1.654%and 0.48%,respectively,and those of U.lactuca were 2.01%,1.187%and 0.138%,respectively,when the culture densities were 0.5,2.0 and 4.0 g/L.Two-factor analysis of variance showed that the former was significantly higher than the latter,when the culture density of the two species of seaweeds was 0.5 g/L(P<0.05).The two-way analysis of variance showed that when the culture density of the two kinds of seaweeds was 0.5 g/L,the specific growth rate of G.lichevoides was significantly higher than that of U.lactuca(P<0.05).Based on the above research,the two macroalgae could reduce the nutrients in the wastewater to a large extent,but the culture density determined the scale and economic benefits of seaweed cultivation and further affected the normal growth,metabolism and quality of the seaweeds.[Conclusions]This study provides some theoretical basis for large-scale seaweed farming and biological selection of in-situ ecological restoration of eutrophic seawater.展开更多
基金This work was financially supported by the Shandong Provincial Natural Science Foundation(ZR2020QB116)the Excellent Young Talents Foundation in Universities of Anhui Province(gxyq2021223)the Key Research Project of Natural Science in Universities of Anhui Province.(KJ2020A0749).
文摘Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabricate multifunctional and environmentally friendly materials,which can be stably applied to purify the actual complicated wastewater.Here,a Ag/Ag/α-Fe_(2)O_(3) heterostructure anchored copper mesh was intentionally synthesized using a facile two-step hydrothermal method.The resultant mesh with superhydrophilicity and underwater superoleophobicity was capable of separating various oil/water mixtures with superior separation efficiency and high permeationflux driven by gravity.Benefiting from the joint effects of the smaller band gap of Ag/α-Fe_(2)O_(3) heterojunction,inherent antibacterial capacity of Ag/α-Fe_(2)O_(3) and Ag nanoparticles,favorable conductive substrate,as well as the hierarchical structure with superwettability,such mesh presented remarkably enhanced degradation capability toward organic dyes under visible light irradiation and antibacterial activity against both Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)compared with the pure Ag/α-Fe_(2)O_(3) coated mesh.Impressively,the mesh exhibited bifunctional water purification performance,in which organic dyes were eliminated simultaneously from water during oil/water separation in onefiltration process.More importantly,this mesh behaved exceptional chemical resistance,mechanical stability and long-term reusability.Therefore,this material with multifunctional integration may hold promising potential for steady water purification in practice.
基金supported by the National Scientific Foundation of China(No.61974050,61704061,51805184,61974049)Key Laboratory of Non-ferrous Metals and New Materials Processing Technology of Ministry of Education/Guangxi Key Laboratory of Optoelectronic Materials and Devices open Fund(20KF-9)+2 种基金the Natural Science Foundation of Hunan Province of China(No.2018TP2003)Excellent youth project of Hunan Provincial Department of Education(No.18B111)State Key Laboratory of Crop Germplasm Innovation and Resource Utilization(No.17KFXN02).The authors thank the technical support from Analytical and Testing Center at Huazhong University of Science and Technology.
文摘Increasing both clean water and green energy demands for survival and development are the grand challenges of our age.Here,we successfully fabricate a novel multifunctional 3D graphene-based catalytic membrane(3D-GCM)with active metal nanoparticles(AMNs)loading for simultaneously obtaining the water purification and clean energy generation,via a“green”one-step laser scribing technology.The as-prepared 3D-GCM shows high porosity and uniform distribution with AMNs,which exhibits high permeated fluxes(over 100 L m^(−2) h^(−1))and versatile super-adsorption capacities for the removal of tricky organic pollutants from wastewater under ultra-low pressure-driving(0.1 bar).After adsorption saturating,the AMNs in 3D-GCM actuates the advanced oxidization process to self-clean the fouled membrane via the catalysis,and restores the adsorption capacity well for the next time membrane separation.Most importantly,the 3D-GCM with the welding of laser scribing overcomes the lateral shear force damaging during the long-term separation.Moreover,the 3D-GCM could emit plentiful of hot electrons from AMNs under light irradiation,realizing the membrane catalytic hydrolysis reactions for hydrogen energy generation.This“green”precision manufacturing with laser scribing technology provides a feasible technology to fabricate high-efficient and robust 3D-GCM microreactor in the tricky wastewater purification and sustainable clean energy production as well.
基金Supported by the Social Development Project of Jiangsu Provincial Science and Technology Department(BK2010023)江苏省科技厅社会发展项目(BK2010023)资助
文摘[Objective] To study the purification effect of plant community on wetland water environment in Hongze Lake, and to provide references to the ecological restoration of this area. [Methed] The typical lakeside zone of Hongze Lake Wetland National Nature Reserve was taken as the study area. Through the field survey based on environmental characteristics of aquatic areas and non-aquatic areas, combined with laboratory test, the content changes of nutrients (N and P), COD (chemical oxygen demand) and SD (transparency) levels in the water body of lake wetland were measured; the purification effect of the lake wetland ecosystem in the growth process of aquatic vegetation was quantitatively analyzed, and possible influ- encing factors were discussed. [Result] Aquatic vegetation could remove the TN, TP, COD, Chla in wetland water environment and had obvious effects on the changes of SD content. Competition between aquatic plants can inhibit the growth of algae and relieve the eutrophication of water body. [Conclusion] This study provided theoretical basis for ecological restoration and enhancement of self-purification capability in the lakeside zone of Hongze Lake.
基金This work was supported by the Natural Science Foundation of China(No.50538090).
文摘As an effective, efficient, and economic approach for water purification, adsorbents and adsorption processes have been widely studied and applied in different aspects for a long time. In the recent years, a lot of novel adsorption processes have been developed for enhancing the efficiency of removing the organic and inorganic contaminants from water. This article reviews some new adsorbents and advanced adsorption methods that specialize in their compositions, structures, functions, and characteristics used in water treatment. The review emphasizes adsorption/catalytic oxidation process, adsorption/catalytic reduction process, adsorption coupled with redox process, biomimetic sorbent and its sorption behaviors of POPs, and modified adsorbents and their water purification efficiency.
文摘Catalytic technologies have been paid increasing attention in refractory pollutants abatement due to its practical and potential values in water purification. As effective and efficient approaches for water purification, Fenton's reagent, ozonation, electrochemical and photocatalytic methods have been widely studied and applied in different aspects and have been reviewed by several articles. In recent years, some novel catalytic processes based on above processes have been developed for enhancing the efficiency of removing the organics from water. This review emphasized on the recent development of heterogeneous catalytic ozonation, electrocatalysis in respect of novel electrodes and electro-Fenton method, photoelectrocatalysis process and photoelectron-Fenton in water purification. It was also an attempt to propose general ideas about mechanism and principle enhancing the catalytic efficiency for the degradation and the mineralization of organics in water.
基金support of NSFC 51702284Fundamental Research Funds for the Central Universities (112109*172210171)+2 种基金the Startup Foundation for Hundred-Talent Program of Zhejiang University (112100-193820101/001/022)support of the NSFC 21501138the Science Research Foundation of Wuhan Institute of Technology (K201513)
文摘Visible-light-responsive ternary metal tungstate(MWO_4) photocatalysts are being increasingly investigated for energy conversion and environmental purification applications owing to their striking features, including low cost,eco-friendliness, and high stability under acidic and oxidative conditions. However, rapid recombination of photoinduced electron–hole pairs and a narrow light response range to the solar spectrum lead to low photocatalytic activity of MWO_4-based materials, thus significantly hampering their wide usage in practice. To enable their widespread practical usage, significant efforts have been devoted, by developing new concepts and innovative strategies. In this review, we aim to provide an integrated overview of the fundamentals and recent progress of MWO_4-based photocatalysts. Furthermore, different strategies, including morphological control, surface modification, heteroatom doping, and heterojunction fabrication, which are employed to promote the photocatalyticactivities of MWO_4-based materials, are systematically summarized and discussed. Finally, existing challenges and a future perspective are also provided to shed light on the development of highly efficient MWO_4-based photocatalysts.
文摘A sintering technology for preparing porous materials from sea bottom sediments was developed for use in water purification. The purpose of the present study was to develop methods for converting the sea bottom sediments dredged from Ago Bay into value-added recycled products. The sintered products fabricated at 400℃ were found to be very effective adsorbents for the removal of heavy metals.
文摘To find a new way treating the wastewater from biogas reactors in a pig farm, vegetated floating bed was built for observing the water-purifying capability of water spinach (Ipomoea aquatic) planted on the water surface. Experiments were carried out to record the growth and biomass accumulation of water spinach and its effect on purification of biogas wastewater. The results show that the water which mixed with biogas wastewater has been purified significantly by water spinach on the floating bed. During its growth season within four months, the overall length of water spinach reached 199 ± 35 cm, while its root length reached 63 ± 28.6 cm. The average weight of individual fresh plant is of 1285 ± 619.7 g. Meanwhile, the concentration of total nitrogen (TN) in water under the floating bed decreased from 8.9 ± 0.062 mg·L-1 to 0.5 ± 0.011 mg·L-1;the concentration of total phosphorus (TP) decreased from 4.4 ± 0.236 mg·L-1 to 0.92 ± 0.024 mg·L-1;the concentration of chemical oxygen demand (COD) decreased from 87.3 ± 6.68 mg·L-1 to 0.74 ± 0.46 mg·L-1. It suggests that the water spinach removed more than 90% of pollutants in terms of TN, TP, and COD from the water. Results show that the vegetated floating bed technique is a feasible way to dispose the biogas slurry.
文摘Rural landscape is not only a natural landscape,but also a cultural landscape.The improvement of rural environment in Lushi County is carried out under the background of“Building Beautiful Villages”.Through the plan of environmental improvement,the appearance of villages in rural areas will be significantly improved,and the gap between urban and rural areas will be shortened.This research addresses the problems of scarce water resources,imperfect rainwater collection facilities,and increased environmental pollution in rural areas,and explores a flexible,effective,and integrated landscape ecological water treatment system that integrates with natural ecosystems.The practice has shown that the flexible combination of different technical measures according to local conditions and the construction of ecological water self-circulation and self-purification systems can reduce maintenance costs and achieve sustainable landscape.The virtuous cycle of the revetment’s micro-ecology greatly improves the environmental carrying capacity of the landscape.Reasonable water management system is more flexible in dealing with unexpected problems.The thesis proposes landscape design strategies for water circulation and water purification in rural areas,and applies them to actual design cases.It attempts to introduce a combined treatment system to achieve a more diverse landscape concept and further explore the healthy and sustainable development of rural water environment.
基金supported by the National Natural Science Foundation of China(21878043,21576039,21421005 and U1608223)Program for Innovative Research Team in University(IRT_13R06)+4 种基金Fundamental Research Funds for the Central Universities(DUT18ZD218)Talent Fund of Shandong Collaborative Innovation Center of Eco-Chemical Engineering(XTCXYX04)Program for the Innovative Talents of Higher Learning Institutions of Liaoning(LCR2018066)Dalian High-level Talents Innovation Support Program(2019RD06)the Liaoning Revitalization Talent Program(1801006).
文摘Along with the environmental pollution, the scarcity of clean water seriously threatens the sustainable development of human society.Recently, the rapid development of solar evaporators has injected new vitality into the field of water purification. However, the industry faces a considerable challenge of achieving comprehensive purification of ions, especially the efficient removal of mercury ions. In this work, we introduce an ideal mercury-removal platform based on facilely and cost-effectively synthesized polysulfide nanoparticles(PSNs). Further development of PSN-functionalized reduced graphene oxide(PSN-rGO) aerogel evaporator results in achieving a high evaporation rate of 1.55 kg m^(-2)h^(-1)with energy efficiency of 90.8% under 1 sun. With the merits of interconnected porous structure and adsorption ability, the photothermal aerogel presents overall purification of heavy metal ions from wastewater. During solar desalination, salt ions can be rejected with long-term stability. Compared with traditional water purification technologies, this highly efficient solar evaporator provides a new practical method to utilize clean energy for clean water production.
基金support provided by Three Valleys Water,UKVeolia Water, UK.funded by the Life Sciences Research Grant,University of London
文摘Objective:To identify the prevalence of Acanthamoeba in drinking water treatment plants during the course of the purification processes.Methods:Samples were taken from two drinking water purification plants and monitored for the presence of Acanthamoeba in order to estimate the removal capacity of treatment methods employed. Water samples were collected at each step in the purification,during the one year survey,and analysed for the presence of Acanthamoeba spp.by plating on bacterial-seeded plates.Results:The results showed that amoebae were present in surface raw waters in 100%of the samples tested.Acanthamoeba spp.were isolated from 71%and 57%of the water samples collected from post flat-bottom clarifier 1 and post-sedimentation plant respectively.Considering the outflow drinking waters,the removal capacity was 100%in both purification plants monitored.The occurrence of Acanthamoeba was not associated with seasonality.Conclusion: These findings confirm that water purification plants employing methods of flocculation,sedimentation,and filtration in combination with activated charcoal filtration,ozonisation and chlorination exhibited sufficient Acanthamoeba removal capacity and the presence of amoebae in the tap water may be due to older plumbing,water storage tanks,tap water hygiene,and/or environmental settings.
文摘Purification of water contaminated by toxic organic compounds at low and very low concentration is a quite interesting challenge from both the technical and the economical point of view. In fact, the direct destruction of organic compounds dissolved in very diluted aqueous solution is very costly and hardly achievable. To overcome this problems it was studied and developed a new water purification process which is made of three steps: a) removal of the diluted and toxic polluting compounds by adsorption on activated carbon beds operating at ambient P ant T;b) regeneration of the exhausted carbon bed with supercritical water in order to obtain a mixture of water and polluting compounds signifi-cantly more concentrated than the contaminated liquid water;c) destruction of the toxic compounds in a continuous Supercritical Water Oxidation Reactor. Step a) was studied at laboratory scale in order to obtain all the required information for modeling the adsorption operation;step b) was modeled by using literature experimental data and, step c) was validated at pilot plant scale. In all the above mentioned steps, phenol was used as representative of polluting compounds.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574061,61405043,and 61675053)the 111 Project,China(Grant No.B13015)the Fundamental Research Funds for Harbin Engineering University of China
文摘Water purification is required for environmental protection. In this paper, we propose and demonstrate a rapid, effective and low-cost approach to collect numerous impurities(microparticles) in water on the basis of laser-induced thermal convection. We introduce a heat source by using a fiber tip, which is fabricated into a non-adiabatic-tapered shape. In order to improve the laser power absorption efficiency, we coat a gold film with a thickness of 300 nm on the fiber tip. Due to absorption, the laser power transferred from the fiber to the water results in thermal convection. The forces generated from the thermal convection drive the microparticles to move towards the fiber tip, thereby performing microparticle collection and achieving water purification. Laser-induced thermal convection provides a simple, high-efficiency and low-cost method of collecting microparticles, which is a suitable and convenient for local water purification.
基金Supported by the Project for Science and Technology Innovation Team of Zhejiang Province,China
文摘[ Objective] The study aims to resolve water resource problem availably. [ Method] On the basis of wetland self-purification capacity, Yanshan River water was purified by Xixi Wetland, and the feasibility of using treated Yanshan River water for urban greening and watering road was analyzed. [Result] Compared with direct utilization of tap water, it is more economic to recycle Yanshan River water purified by Xixi Wetland for urban greening and watering read, with obvious economic, ecological and social benefits, so it is an effective method to address shortage of water resources and is worth spreading. [ Conclusion] It is feasible to use Yanshan River water purified by Xixi Wetland for urban greening and watering read.
文摘Large deposits of impure kaolins exist in Jordan and many parts of the world;geoplymers can reduce environmental impacts and have multi-application in many fields, such as water purification, waste treatment, fire proof construction, etc. The aim of this research is to investigate the use of alkali activated zeolitic tuff and low purity metakaolin as precursors for the production of functional geoplymers exhibiting proper mechanical properties and high potential for water storage and decontamination of polluted solutions. The results confirmed that this type of geopolymers showed superior mechanical characteristics and higher adsorption capacity towards heavy metals such as Cu(II) ions, which was similar to natural zeolite. X-ray diffraction analysis showed that phillipsite, a major zeolite mineral, disappeared upon geopolymerization, while scanning electron microscopy analysis showed that geopolymers exhibit a porous matrix of nano-particles. The geopolymers have also displayed high compressive strength and tensile bending strength of about 7.8 MPa and 45 MPa respectively, compared to reference geopolymers. This functional-geopolymers indicate that they are efficient, cost effective and have a potential for number of applications including construction, water storage and wastewater treatment.
文摘[ Objective ] The aim was to study the influence of filamentous algae on the process of water ecological purification. [ Method ] The occurrence mechanism of filamentous algae and its ecological system were summarized and analyzed. Considering the ecological purification in north- ern Jiangsu, the occurrence and prevention of filamentous algae in water, the method to prevent filamentous algae in polluted water was discussed. [ Result] The results showed that by measures of improving planting density, regular harvesting, and water flow state control before the filamentous algae blooming period, together with improving local pH value, light interference and ecological control during the blooming period, can effectively control the filamentous algae blooming. [ Condusion] The study of the happening mechanism of filamentous algae provided theoretical references and the technical basis in the work of filamentous algae prevention and control.
基金Sponsored by Key Technology Research and Development Program of Hebei Province(15227652D)Dynamic Control Technology of Sandy Land Protection Forest System Structure in Northern North China(2016YFC0500802-06)
文摘Under artificially simulated conditions, the water purification effects of Lythrum salicaria, Typha minima, Scirpus validus, Iris wilsonii and their configurations were studied. The results showed that various aquatic plants and their configurations showed purification effects for total nitrogen(TN), nitrate nitrogen(NO_3^-), total phosphorus(TP), orthophosphate(PO_4^(3-)) and chemical oxygen demand(COD) in water body, and the purification effects of aquatic plant configurations were better than those of single ones. Regression analysis was conducted for dynamics of various water quality indicators. The removal rates of TN and COD within 50 d by the combination of L. salicaria and I. wilsonii were 73.83% and 77.4%, respectively, with the best purification effect; the removal rate of NO_3^- within 20 d by the combination of S. validus and I. wilsonii was 89.41%; and the combination of S. validus and I. wilsonii showed the best removal effect for TP and PO43-, of which the 50-d removal rates were 88.98% and 92.39%, respectively. Reasonable choice of local aquatic plants and their optimal combinations can be applied in the improvement of water quality of rivers.
文摘The two-dimensional nonlinear shallow water equations in the presence of Coriolis force and bottom topography are solved numerically using the fractional steps method. The fractional steps method consists of splitting the multi-dimensional matrix inversion problem into an equivalent one dimensional problem which is successively integrated in every direction along the characteristics using the Riemann invariant associated with the cubic spline interpolation. The height and the velocity field of the shallow water equations over irregular bottom are discretized on a fixed Eulerian grid and time-stepped using the fractional steps method. Effects of the Coriolis force and the bottom topography for particular initial flows on the velocity components and the free surface elevation have been studied and the results are plotted.
文摘Preliminary results of our study related to simultaneous waste water purification by photocatalytic degradation of organic impurity (Methylene Blue dye) and its effects on seed germination are presented here. It is interesting and important to know that complete degradation of the dye occurs within 2 hours and does not adversely affect the seed germination process. It is concluded that waste water purification by photocatalysis and seed germination (agriculture) can be carried out simultaneously, opening a way for advanced agriculture.
基金Ningbo City's 2015 Science and Technology Project for Enriching People:Optimization and Promotion of Prawn,Shellfish and Algae Ponds Integrated Aquaculture Technology(2015C10008)Ningbo Science and Technology Planning Project(2019C10039)+1 种基金Research and Development Project of Ecological and Efficient Clean Aquaculture of Mudflat Shellfish(2019C02054)China Shellfish Research System(CARS-49).
文摘[Objectives]This study was conducted to investigate the purification effects of two common large seaweeds on the tail water of prawn farming in greenhouses,and to determine the best culture density of seaweeds.[Methods]Two large seaweed species,Gracilaria lichevoides and Ulva lactuca,were selected to set four culture densities of 0.5,2,4 g/L and a blank control group,respectively.The seaweeds were cultured in 100 L white polyethylene buckets,each of which contained 50 L of tail water from prawn culture.[Results]After 5 d,the nutrient removal rates of the two seaweeds were directly proportional to the density.There was no significant difference in NH_(4)-N removal rate between G.lichevoides and U.lactuca(P>0.05)by two-way analysis of variance,and the NH_(4)-N removal rate of the latter was higher.The removal rates of NO_(3)-N,TN and TP by G.lichevoides were significantly higher than those by U.lactuca(P<0.05).The specific growth rates of seaweeds were negatively correlated with their culture densities.The specific growth rates of G.lichevoides were 5.73%,1.654%and 0.48%,respectively,and those of U.lactuca were 2.01%,1.187%and 0.138%,respectively,when the culture densities were 0.5,2.0 and 4.0 g/L.Two-factor analysis of variance showed that the former was significantly higher than the latter,when the culture density of the two species of seaweeds was 0.5 g/L(P<0.05).The two-way analysis of variance showed that when the culture density of the two kinds of seaweeds was 0.5 g/L,the specific growth rate of G.lichevoides was significantly higher than that of U.lactuca(P<0.05).Based on the above research,the two macroalgae could reduce the nutrients in the wastewater to a large extent,but the culture density determined the scale and economic benefits of seaweed cultivation and further affected the normal growth,metabolism and quality of the seaweeds.[Conclusions]This study provides some theoretical basis for large-scale seaweed farming and biological selection of in-situ ecological restoration of eutrophic seawater.