In order to deal with torque pulsation problem caused by traditional control method for brushless DC (BLDC) motor and to achieve high precision and good stability, a novel control strategy is proposed. Compared with...In order to deal with torque pulsation problem caused by traditional control method for brushless DC (BLDC) motor and to achieve high precision and good stability, a novel control strategy is proposed. Compared with the traditional control scheme, by using phase voltage as a control objective and making waveform of phase current approximately quasi-sinusoidal, torque ripple of BLDC motor is reduced from the original 14% to 3.4%, while toque is increased by 3.8%. Furthermore, by detecting zero-crossings of back electromotive force (BEMF) with non-conducting phases, sensorless control is realized. The new control strategy is simple. It can minimize torque ripple, increase torque, and realize sensorless control for BLDC motor. Simulation and experiments show good performance of BLDC motor by using the new control method.展开更多
The principle and design method of the large gap magnetic drive system is studied in this work. The calculation model of the torque-angle characteristic in the large gap magnetic drive system driven by traveling wave ...The principle and design method of the large gap magnetic drive system is studied in this work. The calculation model of the torque-angle characteristic in the large gap magnetic drive system driven by traveling wave magnetic field is established. The calculation model is computed by using MATLAB software, and the pattern of the system’s torque-angle characteristic is obtained by analyzing study results. These results indicate that: torque-angle characteristic and the driving torque of the system can be adjusted by changing the electric current of coil, the magnetization of permanent magnetic gear, the inner diameter of permanent magnetic gear, the coupling distance between electromagnet and permanent magnetic gear, the outer diameter of permanent magnetic gear, and the axial length of permanent magnetic gear.展开更多
Background: Anterior chamber angle (ACA) can be measured by many different techniques. In order for a technique to be a part of the routine eye examination, it has to be quick and easy in good agreement with gonioscop...Background: Anterior chamber angle (ACA) can be measured by many different techniques. In order for a technique to be a part of the routine eye examination, it has to be quick and easy in good agreement with gonioscopy both nasally and temporally. Aim: To investigate variation in ACA measurement between gonioscopy, van Herick technique, anterior segment optical coherence tomography (AS-OCT) and Sirius Scheimpflug-Camera both nasally and temporally. Method: The ACA of 50 eyes of 25 healthy subjects was measured with gonioscopy, van Herick technique, AS-OCT and Sirius Scheimpflug-Camera. The angle was measured both nasally and temporally. Results: No statistically significant difference could be found between gonioscopy, van Herick technique and AS-OCT either nasally or temporally. The Sirius Scheimpflug-Camera on the other hand showed statistically significant difference to gonioscopy (p < 0.0001) both nasally (p = 0.03, p = 0.001, p < 0.0001) and temporally (p = 0.0002, p = 0.001, p Conclusion: This study showed good agreement between three of the four techniques. ACA measurements obtained by the Sirius Scheimpflug-Camera should therefore not be considered interchangeable with those obtained by the remaining three methods.展开更多
Switched reluctance motor(SRM)usually adopts Direct Instantaneous Torque Control(DITC)to suppress torque ripple.However,due to the fixed turn-on angle and the control mode of the two-phase exchange region,the conventi...Switched reluctance motor(SRM)usually adopts Direct Instantaneous Torque Control(DITC)to suppress torque ripple.However,due to the fixed turn-on angle and the control mode of the two-phase exchange region,the conventional DITC control method has low adaptability in different working conditions,which will lead to large torque ripple.For this problem,an improved DITC control method based on turn-on angle optimization is proposed in this paper.Firstly,the improved BP neural network is used to construct a nonlinear torque model,so that the torque can be accurately fed back in real time.Secondly,the turn-on angle optimization algorithm based on improved GRNN neural network is established,so that the turn-on angle can be adjusted adaptively online.Then,according to the magnitude of inductance change rate,the two-phase exchange region is divided into two regions,and the phase with larger inductance change rate and current is selected to provide torque in the sub-regions.Finally,taking a 3-phase 6/20 SRM as example,simulation and experimental verification are carried out to verify the effectiveness of this method.展开更多
BACKGROUND The data obtained on the anatomical knowledge of the tracheobronchial system can be used for diagnosis,treatment and interventional interventions in areas such as anesthesia,thoracic surgery,pulmonary physi...BACKGROUND The data obtained on the anatomical knowledge of the tracheobronchial system can be used for diagnosis,treatment and interventional interventions in areas such as anesthesia,thoracic surgery,pulmonary physiology.AIM To determine the tracheobronchial branching angles in pediatric and adult populations by using the multislice computed tomography(CT)and minimum intensity projection(MinIP)technique,which is a non-invasive method.METHODS Our study was carried out retrospectively.Patients who underwent contrast and non-contrast CT examination,whose anatomically and pathophysiologically good tracheobronchial system and lung parenchyma images were obtained,were included in the study.Measurements were made in the coronal plane of the lung parenchyma.In the coronal plane,right main bronchus-left main bronchus angle,right upper lobe bronchus-intermedius bronchus angle,right middle lobe bronchus-right lower lobe bronchus angle,left upper lobe bronchus-left lower lobe bronchus angle were measured.RESULTS The study population consisted of 1511 patients,753 pediatric(mean age:13.4±4.3;range:1-18 years)and 758 adults(mean age:54.3±17.3;range:19-94 years).In our study,tracheal bifurcation angle was found to be 73.3°±13.7°(59.6°-87°)in the whole population.In the pediatric group,the right-left main coronal level was found to be higher in boys compared to girls(74.6°±12.9°vs 71.2°±13.9°,P=0.001).In the adult group,the right-left main coronal level was found to be lower in males compared to females(71.9°±12.9°vs 75.8°±14.7°,P<0.001).CONCLUSIONS Our study,with the number of 1511 patients,is the first study in the literature with the largest number of patient populations including pediatric and adult demographic data,measuring the angle values of the tracheobronchial system using multislice CT and MinIP technique.Study data will not only be a guide during invasive procedures,but it can also guide studies to be done with imaging methods.展开更多
Serious commutation lag occurs when a Brushless DC Motor(BLDCM) operates at high speeds,and this leads to torque decline with ripple.In this paper,an advanced conduction control scheme is proposed which can accelerate...Serious commutation lag occurs when a Brushless DC Motor(BLDCM) operates at high speeds,and this leads to torque decline with ripple.In this paper,an advanced conduction control scheme is proposed which can accelerate the commutation and enhance the torque production remarkably.Besides,an on line adjusting algorithm based on the Golden Section Method is adopted to search the optimal advanced conduction angle.Simulation and experimental results verify the feasibility and effectivity of the scheme proposed.展开更多
With the air gap magnetic field distribution of surface mounted permanent magnet (PM) motors obtained using an analytical technique, the instantaneous electromagnetic torque and its corresponding components are inve...With the air gap magnetic field distribution of surface mounted permanent magnet (PM) motors obtained using an analytical technique, the instantaneous electromagnetic torque and its corresponding components are investigated with the Maxwell stress tensor method. Accurate results can easily be achieved using the proposed method without using the tedious finite element analysis (FEA). In this paper, the electromagnetic torque of a surface mounted PM motor with two phases energized is decomposed into four torque components. This technique is useful not only for the design and optimization of the permanent magnet motor, but also for the choice of control strategy.展开更多
The signal to noise ratio (SNR) of seismic waves is usually very low after long distance transmission. For this condition, to improve the bearing estimation capability in the low SNR, a frequency domain polarization...The signal to noise ratio (SNR) of seismic waves is usually very low after long distance transmission. For this condition, to improve the bearing estimation capability in the low SNR, a frequency domain polarization weighted ESPRIT method using a single vector device is proposed. The frequency domain polari- zation parameters extracted from the signals are used to design the weighted function which is applied to the received signals. The bearing angle and the target frequency are estimated through ESPRIT using the weighted signals. The simulation and experiment results show that the presented method can obtain accurate estimation values under the low SNR with little prior information.展开更多
The Kehdolan area is located at 20 kilometers to the?south-east of Dozdozan Town (Eastern Azarbaijan Province). According to structural geology, volconic rocks are situated in Alborz-Azarbyjan zone, and faults?are?obs...The Kehdolan area is located at 20 kilometers to the?south-east of Dozdozan Town (Eastern Azarbaijan Province). According to structural geology, volconic rocks are situated in Alborz-Azarbyjan zone, and faults?are?observed?in?the?same direction to this system with SE-NW trend. The results show that kaolinite alteration trend with Argilic and propylitic veins?is the?same direction with SW-NE faults in this area. Therefore, these faults with these trends can be considered as the mineralization control for determination of the alterations. Different image processing techniques,?such as false color composite?(FCC), band ratios, color ratio composite?(CRC), principal component?analysis?(PCA), Crosta technique, supervised spectral angle mapping?(SAM), are used for?identification of the alteration zones associated with copper mineralization. In this project ASTER?data are process and spectral analysis to fit for recognizing intensity and kind of argillic, propylitic,?philic, and ETM+ data?which?are process and to fit for iron oxide and relation to metal mineralization of the area. For recognizing different alterations of the study area, some chemical and mineralogical analysis data from the samples showed that ASTER data and ETM+ data were?capable of hydrothermal alteration mapping with copper mineralization.?Copper mineralization in the region is in agreement with argillic alteration. SW-NE trending faults controlled the mineralization process.展开更多
Reduction of drag torque in disengaged wet clutches is essential for transmission research because it is one of the potentials of e ciency improvement. Aeration of oil film between two closely rotating plates promotes...Reduction of drag torque in disengaged wet clutches is essential for transmission research because it is one of the potentials of e ciency improvement. Aeration of oil film between two closely rotating plates promotes the decrease of drag torque at high speed region. The e ects of surface tension and static contact angles during aeration are nonnegligible showed by test results. The traditional lubrication model does not adequately predict the experimental results with di erent surface tension and contact angles during aeration. Hence, in this present paper, contact angles between Aluminum and Teflon materials were firstly measured, and the drag torques under two di erent contact angles were examined experimentally. An improved lubrication model of drag torque based on Navier–Stokes equations at the gas-liquid interface was built. The lubrication boundary condition was modified to introduce the e ects of surface tension and contact angle. The model shows that the e ects at the beginning of aeration of oil film are significant. These e ects almost occur at stationary plate due to low Reynolds number and Weber number. The model shows that an increase in the surface tension promotes aeration, but does not a ect the peak drag torque. Increasing contact angle also promotes the aeration, and accelerates the decrease of drag torque. The larger contact angle is, the smaller the peak drag torque will be. A computational fluid dynamics(CFD) model based on volume of fluid(VOF) method was presented to validate the interface shape when aeration occurs. The model prediction has a good agreement with experimental observations for Aluminum plates and Teflon plates. The modified lubrication model of drag torque gives a convenient description of the e ects of surface tension and contact angel, and lays down a frame to understand the beginning of aeration.展开更多
Skyrmions are very promising for applications in spintronics and magnetic memory.It is desired to manipulate and operate a single skyrmion.Here we report on the thermal effect on the motion of current-driven magnetic ...Skyrmions are very promising for applications in spintronics and magnetic memory.It is desired to manipulate and operate a single skyrmion.Here we report on the thermal effect on the motion of current-driven magnetic Skyrmions in magnetic metal.The results show that the magnon current induced by the thermal gradient acts on Skyrmions via magnonic spin-transfer torque,an effect of the transverse and longitudinal Skyrmions drift velocities,thus leading to the effective manipulation of the Hall angle through the ratio of thermal gradient to electric current density,which can be used as a Skyrmion valve.展开更多
The objective of this research is mainly focused on environment-friendly and moderately slow flapping wind turbine which can easily operate in or near urban areas or rooftops owing to scale merit with low-frequency tu...The objective of this research is mainly focused on environment-friendly and moderately slow flapping wind turbine which can easily operate in or near urban areas or rooftops owing to scale merit with low-frequency turbine noise, installation cost, avian mortality rate and safety consideration etc. The authors are focusing on lift based (LB) slow flapping wind turbine operated within a small attack angle amplitude whereas the previous research treated a lift and drag based (LDB) flapping turbine. Here, a unique trajectory for the wing motion was yet designed by using the Chebyshev dyad linkage mechanism as well as the previous report. The wind energy transferred to the mechanical rotation, adopting a single symmetric wing NACA0012. To obtain a smooth flapping motion for the blade, we optimize all fundamental parameters with our simulation model for optimum performance of the turbine. Both static and dynamic analysis has been conducted to confirm the feasibility of the present design. In addition, wind turbine performance was studied for a suitable range of free stream wind velocities. This report confirms that the developed flapping wind turbine can drive at slow speed with suitable energy extraction rate at different wind velocities. Moreover, we made a simple comparative study of the outcomes obtained from our previous lift and drag based flapping wind turbine with present one, i.e., lift based flapping turbine.展开更多
基金Project supported by the Shanghai Leading Academic Discipline Project (Grant No.T0103)
文摘In order to deal with torque pulsation problem caused by traditional control method for brushless DC (BLDC) motor and to achieve high precision and good stability, a novel control strategy is proposed. Compared with the traditional control scheme, by using phase voltage as a control objective and making waveform of phase current approximately quasi-sinusoidal, torque ripple of BLDC motor is reduced from the original 14% to 3.4%, while toque is increased by 3.8%. Furthermore, by detecting zero-crossings of back electromotive force (BEMF) with non-conducting phases, sensorless control is realized. The new control strategy is simple. It can minimize torque ripple, increase torque, and realize sensorless control for BLDC motor. Simulation and experiments show good performance of BLDC motor by using the new control method.
文摘The principle and design method of the large gap magnetic drive system is studied in this work. The calculation model of the torque-angle characteristic in the large gap magnetic drive system driven by traveling wave magnetic field is established. The calculation model is computed by using MATLAB software, and the pattern of the system’s torque-angle characteristic is obtained by analyzing study results. These results indicate that: torque-angle characteristic and the driving torque of the system can be adjusted by changing the electric current of coil, the magnetization of permanent magnetic gear, the inner diameter of permanent magnetic gear, the coupling distance between electromagnet and permanent magnetic gear, the outer diameter of permanent magnetic gear, and the axial length of permanent magnetic gear.
文摘Background: Anterior chamber angle (ACA) can be measured by many different techniques. In order for a technique to be a part of the routine eye examination, it has to be quick and easy in good agreement with gonioscopy both nasally and temporally. Aim: To investigate variation in ACA measurement between gonioscopy, van Herick technique, anterior segment optical coherence tomography (AS-OCT) and Sirius Scheimpflug-Camera both nasally and temporally. Method: The ACA of 50 eyes of 25 healthy subjects was measured with gonioscopy, van Herick technique, AS-OCT and Sirius Scheimpflug-Camera. The angle was measured both nasally and temporally. Results: No statistically significant difference could be found between gonioscopy, van Herick technique and AS-OCT either nasally or temporally. The Sirius Scheimpflug-Camera on the other hand showed statistically significant difference to gonioscopy (p < 0.0001) both nasally (p = 0.03, p = 0.001, p < 0.0001) and temporally (p = 0.0002, p = 0.001, p Conclusion: This study showed good agreement between three of the four techniques. ACA measurements obtained by the Sirius Scheimpflug-Camera should therefore not be considered interchangeable with those obtained by the remaining three methods.
基金supported by National Natural Science Foundation of China under Grant 52167005Science and Technology Research Project of Jiangxi Provincial Department of Education under Grant GJJ200826。
文摘Switched reluctance motor(SRM)usually adopts Direct Instantaneous Torque Control(DITC)to suppress torque ripple.However,due to the fixed turn-on angle and the control mode of the two-phase exchange region,the conventional DITC control method has low adaptability in different working conditions,which will lead to large torque ripple.For this problem,an improved DITC control method based on turn-on angle optimization is proposed in this paper.Firstly,the improved BP neural network is used to construct a nonlinear torque model,so that the torque can be accurately fed back in real time.Secondly,the turn-on angle optimization algorithm based on improved GRNN neural network is established,so that the turn-on angle can be adjusted adaptively online.Then,according to the magnitude of inductance change rate,the two-phase exchange region is divided into two regions,and the phase with larger inductance change rate and current is selected to provide torque in the sub-regions.Finally,taking a 3-phase 6/20 SRM as example,simulation and experimental verification are carried out to verify the effectiveness of this method.
文摘BACKGROUND The data obtained on the anatomical knowledge of the tracheobronchial system can be used for diagnosis,treatment and interventional interventions in areas such as anesthesia,thoracic surgery,pulmonary physiology.AIM To determine the tracheobronchial branching angles in pediatric and adult populations by using the multislice computed tomography(CT)and minimum intensity projection(MinIP)technique,which is a non-invasive method.METHODS Our study was carried out retrospectively.Patients who underwent contrast and non-contrast CT examination,whose anatomically and pathophysiologically good tracheobronchial system and lung parenchyma images were obtained,were included in the study.Measurements were made in the coronal plane of the lung parenchyma.In the coronal plane,right main bronchus-left main bronchus angle,right upper lobe bronchus-intermedius bronchus angle,right middle lobe bronchus-right lower lobe bronchus angle,left upper lobe bronchus-left lower lobe bronchus angle were measured.RESULTS The study population consisted of 1511 patients,753 pediatric(mean age:13.4±4.3;range:1-18 years)and 758 adults(mean age:54.3±17.3;range:19-94 years).In our study,tracheal bifurcation angle was found to be 73.3°±13.7°(59.6°-87°)in the whole population.In the pediatric group,the right-left main coronal level was found to be higher in boys compared to girls(74.6°±12.9°vs 71.2°±13.9°,P=0.001).In the adult group,the right-left main coronal level was found to be lower in males compared to females(71.9°±12.9°vs 75.8°±14.7°,P<0.001).CONCLUSIONS Our study,with the number of 1511 patients,is the first study in the literature with the largest number of patient populations including pediatric and adult demographic data,measuring the angle values of the tracheobronchial system using multislice CT and MinIP technique.Study data will not only be a guide during invasive procedures,but it can also guide studies to be done with imaging methods.
基金Supported by College Doctoral- Program Special ResearchFund of the Ministry of Education (No.970 0 562 1 )
文摘Serious commutation lag occurs when a Brushless DC Motor(BLDCM) operates at high speeds,and this leads to torque decline with ripple.In this paper,an advanced conduction control scheme is proposed which can accelerate the commutation and enhance the torque production remarkably.Besides,an on line adjusting algorithm based on the Golden Section Method is adopted to search the optimal advanced conduction angle.Simulation and experimental results verify the feasibility and effectivity of the scheme proposed.
基金Project supported by the Science Foundation of Shanghai Municipal Commission of Education (Grant No.04AB30)
文摘With the air gap magnetic field distribution of surface mounted permanent magnet (PM) motors obtained using an analytical technique, the instantaneous electromagnetic torque and its corresponding components are investigated with the Maxwell stress tensor method. Accurate results can easily be achieved using the proposed method without using the tedious finite element analysis (FEA). In this paper, the electromagnetic torque of a surface mounted PM motor with two phases energized is decomposed into four torque components. This technique is useful not only for the design and optimization of the permanent magnet motor, but also for the choice of control strategy.
基金supported by the National Natural Science Foundation of China(11234002)
文摘The signal to noise ratio (SNR) of seismic waves is usually very low after long distance transmission. For this condition, to improve the bearing estimation capability in the low SNR, a frequency domain polarization weighted ESPRIT method using a single vector device is proposed. The frequency domain polari- zation parameters extracted from the signals are used to design the weighted function which is applied to the received signals. The bearing angle and the target frequency are estimated through ESPRIT using the weighted signals. The simulation and experiment results show that the presented method can obtain accurate estimation values under the low SNR with little prior information.
文摘The Kehdolan area is located at 20 kilometers to the?south-east of Dozdozan Town (Eastern Azarbaijan Province). According to structural geology, volconic rocks are situated in Alborz-Azarbyjan zone, and faults?are?observed?in?the?same direction to this system with SE-NW trend. The results show that kaolinite alteration trend with Argilic and propylitic veins?is the?same direction with SW-NE faults in this area. Therefore, these faults with these trends can be considered as the mineralization control for determination of the alterations. Different image processing techniques,?such as false color composite?(FCC), band ratios, color ratio composite?(CRC), principal component?analysis?(PCA), Crosta technique, supervised spectral angle mapping?(SAM), are used for?identification of the alteration zones associated with copper mineralization. In this project ASTER?data are process and spectral analysis to fit for recognizing intensity and kind of argillic, propylitic,?philic, and ETM+ data?which?are process and to fit for iron oxide and relation to metal mineralization of the area. For recognizing different alterations of the study area, some chemical and mineralogical analysis data from the samples showed that ASTER data and ETM+ data were?capable of hydrothermal alteration mapping with copper mineralization.?Copper mineralization in the region is in agreement with argillic alteration. SW-NE trending faults controlled the mineralization process.
基金Supported by National Natural Science Foundation of China(Grant No.51305032)
文摘Reduction of drag torque in disengaged wet clutches is essential for transmission research because it is one of the potentials of e ciency improvement. Aeration of oil film between two closely rotating plates promotes the decrease of drag torque at high speed region. The e ects of surface tension and static contact angles during aeration are nonnegligible showed by test results. The traditional lubrication model does not adequately predict the experimental results with di erent surface tension and contact angles during aeration. Hence, in this present paper, contact angles between Aluminum and Teflon materials were firstly measured, and the drag torques under two di erent contact angles were examined experimentally. An improved lubrication model of drag torque based on Navier–Stokes equations at the gas-liquid interface was built. The lubrication boundary condition was modified to introduce the e ects of surface tension and contact angle. The model shows that the e ects at the beginning of aeration of oil film are significant. These e ects almost occur at stationary plate due to low Reynolds number and Weber number. The model shows that an increase in the surface tension promotes aeration, but does not a ect the peak drag torque. Increasing contact angle also promotes the aeration, and accelerates the decrease of drag torque. The larger contact angle is, the smaller the peak drag torque will be. A computational fluid dynamics(CFD) model based on volume of fluid(VOF) method was presented to validate the interface shape when aeration occurs. The model prediction has a good agreement with experimental observations for Aluminum plates and Teflon plates. The modified lubrication model of drag torque gives a convenient description of the e ects of surface tension and contact angel, and lays down a frame to understand the beginning of aeration.
基金Project supported by the National Natural Science Foundation of China(Grant No.51331006)the Fund from the Chinese Academy of Sciences(Grant No.KJZD-EW-M05)
文摘Skyrmions are very promising for applications in spintronics and magnetic memory.It is desired to manipulate and operate a single skyrmion.Here we report on the thermal effect on the motion of current-driven magnetic Skyrmions in magnetic metal.The results show that the magnon current induced by the thermal gradient acts on Skyrmions via magnonic spin-transfer torque,an effect of the transverse and longitudinal Skyrmions drift velocities,thus leading to the effective manipulation of the Hall angle through the ratio of thermal gradient to electric current density,which can be used as a Skyrmion valve.
文摘The objective of this research is mainly focused on environment-friendly and moderately slow flapping wind turbine which can easily operate in or near urban areas or rooftops owing to scale merit with low-frequency turbine noise, installation cost, avian mortality rate and safety consideration etc. The authors are focusing on lift based (LB) slow flapping wind turbine operated within a small attack angle amplitude whereas the previous research treated a lift and drag based (LDB) flapping turbine. Here, a unique trajectory for the wing motion was yet designed by using the Chebyshev dyad linkage mechanism as well as the previous report. The wind energy transferred to the mechanical rotation, adopting a single symmetric wing NACA0012. To obtain a smooth flapping motion for the blade, we optimize all fundamental parameters with our simulation model for optimum performance of the turbine. Both static and dynamic analysis has been conducted to confirm the feasibility of the present design. In addition, wind turbine performance was studied for a suitable range of free stream wind velocities. This report confirms that the developed flapping wind turbine can drive at slow speed with suitable energy extraction rate at different wind velocities. Moreover, we made a simple comparative study of the outcomes obtained from our previous lift and drag based flapping wind turbine with present one, i.e., lift based flapping turbine.