BACKGROUND Dexmedetomidine and propofol are two sedatives used for long-term sedation.It remains unclear whether dexmedetomidine provides superior cerebral protection for patients undergoing long-term mechanical venti...BACKGROUND Dexmedetomidine and propofol are two sedatives used for long-term sedation.It remains unclear whether dexmedetomidine provides superior cerebral protection for patients undergoing long-term mechanical ventilation.AIM To compare the neuroprotective effects of dexmedetomidine and propofol for sedation during prolonged mechanical ventilation in patients without brain injury.METHODS Patients who underwent mechanical ventilation for>72 h were randomly assigned to receive sedation with dexmedetomidine or propofol.The Richmond Agitation and Sedation Scale(RASS)was used to evaluate sedation effects,with a target range of-3 to 0.The primary outcomes were serum levels of S100-βand neuron-specific enolase(NSE)every 24 h.The secondary outcomes were remifentanil dosage,the proportion of patients requiring rescue sedation,and the time and frequency of RASS scores within the target range.RESULTS A total of 52 and 63 patients were allocated to the dexmedetomidine group and propofol group,respectively.Baseline data were comparable between groups.No significant differences were identified between groups within the median duration of study drug infusion[52.0(IQR:36.0-73.5)h vs 53.0(IQR:37.0-72.0)h,P=0.958],the median dose of remifentanil[4.5(IQR:4.0-5.0)μg/kg/h vs 4.6(IQR:4.0-5.0)μg/kg/h,P=0.395],the median percentage of time in the target RASS range without rescue sedation[85.6%(IQR:65.8%-96.6%)vs 86.7%(IQR:72.3%-95.3),P=0.592],and the median frequency within the target RASS range without rescue sedation[72.2%(60.8%-91.7%)vs 73.3%(60.0%-100.0%),P=0.880].The proportion of patients in the dexmedetomidine group who required rescue sedation was higher than in the propofol group with statistical significance(69.2%vs 50.8%,P=0.045).Serum S100-βand NSE levels in the propofol group were higher than in the dexmedetomidine group with statistical significance during the first six and five days of mechanical ventilation,respectively(all P<0.05).CONCLUSION Dexmedetomidine demonstrated stronger protective effects on the brain compared to propofol for long-term mechanical ventilation in patients without brain injury.展开更多
Underground coal mining frequently uses longwalls.The occurrence of a potentially explosive mixture of methane and air is one of the most serious hazards.A large number of papers have applied numerical modeling of met...Underground coal mining frequently uses longwalls.The occurrence of a potentially explosive mixture of methane and air is one of the most serious hazards.A large number of papers have applied numerical modeling of methane propagation in research aimed at this problem.To date,none of the CFD simulations has considered the movement of the shearer in the analyses.This paper proposes an adaptation of a method used for the description of the movement of trains in tunnels to a specific geometry of a longwall district.The flow of the air-methane mixture was calculated using the finite volume method,in particular the k-w SST and SAS turbulence models.Due to the movement of the shearer,moving and deforming meshes were used for simulation of unsteady flows.Examples of solutions for two hypothetical cases are presented.Finally,the drawbacks and advantages of presented methods are discussed.Further development with the application of either local mesh variability or overset meshes is outlined.展开更多
Methane drainage is used in Polish coal mines in order to reduce mine methane emission as well as to keep methane concentration in mine workings at safe levels. This article describes the method of methane drainage us...Methane drainage is used in Polish coal mines in order to reduce mine methane emission as well as to keep methane concentration in mine workings at safe levels. This article describes the method of methane drainage used in longwall 2 in seam 506. In Poland, coal seams are frequently mined in difficult conditions of very high methane hazard. Under such situations, methane is drained by means of parallel ventilation headings. This paper shows the influence of a specific ventilation system on the drainage efficiency at longwall 2 in seam 506. At this longwall, measurements of methane emission and the efficiency of drained methane were conducted. They consisted in gauging methane concentration, air velocity, absolute air pressure and the amount of methane removed via a drainage system. Experimental data were used to estimate the variations in absolute methane-bearing capacity, ventilation air methane and most importantly, to gauge the efficiency of methane drainage.展开更多
In order to solve coal and gas outbursts during mining coal seam,studying on related problems were carried out. According to the theories of mining upper protective layer,proper mining plan were designed and performed...In order to solve coal and gas outbursts during mining coal seam,studying on related problems were carried out. According to the theories of mining upper protective layer,proper mining plan were designed and performed through field experiment. By means of examining several parameters obtained from the field experiment,the protective effects were evaluated and the protective scope and related parameters were determined. The results of field experiment show that the danger of outbursts was evidently eliminated and the method of mining protective layers is effective and the safety and economic benefits are remarkable. The research has really applied worth and will give beneficial references to mining area with analogous conditions.展开更多
In order to prevent coal and methane outbursts, mining protective layers is an effective means, yet no precedents of mining multiple protective layers is discoveried in seams which includes several seams are prone to ...In order to prevent coal and methane outbursts, mining protective layers is an effective means, yet no precedents of mining multiple protective layers is discoveried in seams which includes several seams are prone to outburst like Xinzhuangzi Mine. This paper perfected the related theories through analyzing mining multiple upper protective layers. By means of examining several parameters, it synthetically analyzed and ascer- tains the protected effectiveness and scope and reasonable parameters, finally obtained the specific indexes and effectiveness of mining multiple protective layers in coal seams cluster.展开更多
In underground coal mines, uncontrolled accumulation of methane and fine coal dust often leads to serious incidents such as explosion. Therefore, methane and dust dispersion in underground mines is closely monitored a...In underground coal mines, uncontrolled accumulation of methane and fine coal dust often leads to serious incidents such as explosion. Therefore, methane and dust dispersion in underground mines is closely monitored and strictly regulated. Accordingly, significant efforts have been devoted to study methane and dust dispersion in underground mines. In this study, methane emission and dust concentration are numerically investigated using a computational fluid dynamics(CFD) approach. Various possible scenarios of underground mine configurations are evaluated. The results indicate that the presence of continuous miner adversely affects the air flow and leads to increased methane and dust concentrations.Nevertheless, it is found that such negative effect can be minimized or even neutralized by operating the scrubber fan in suction mode. In addition, it was found that the combination of scrubber fan in suction mode and brattice results in the best performance in terms of methane and dust removal from the mining face.展开更多
Knowledge of the airflow patterns and methane distributions at a continuous miner face under different ventilation conditions can minimize the risks of explosion and injury to miners by accurately forecasting potentia...Knowledge of the airflow patterns and methane distributions at a continuous miner face under different ventilation conditions can minimize the risks of explosion and injury to miners by accurately forecasting potentially hazardous face methane levels. This study focused on validating a series of computational fluid dynamics(CFD) models using full-scale ventilation gallery data that assessed how curtain setback distance impacted airflow patterns and methane distributions at an empty mining face(no continuous miner present). Three CFD models of face ventilation with 4.6, 7.6 and 10.7 m(15, 25, and 35 ft) blowing curtain setback distances were constructed and validated with experimental data collected in a full-scale ventilation test facility. Good agreement was obtained between the CFD simulation results and this data.Detailed airflow and methane distribution information are provided. Elevated methane zones at the working faces were identified with the three curtain setback distances. Visualization of the setback distance impact on the face methane distribution was performed by utilizing the post-processing capability of the CFD software.展开更多
An increase in methane,spontaneous fire and bumping hazards in Polish hard coal mines,observed in the last two decades,led to the need to elaborate the tools allowing proper selection of a range of preventive measures...An increase in methane,spontaneous fire and bumping hazards in Polish hard coal mines,observed in the last two decades,led to the need to elaborate the tools allowing proper selection of a range of preventive measures to fight them at the stage of designing coal extraction.Designing the production of a coal seams in the conditions of associated methane and spontaneous fires hazards in Polish hard coal mines requires elaboration of the design standards for coal panels in gassy coal seams.This paper presents the guidelines on how to design production in the conditions of associated methane and spontaneous fire hazards.Presented tools and methodology since the very first research were many times verified by daily mining operations in the conditions of associated methane and spontaneous fire hazards,which confirms their significant contribution to the development of safe and economical mining operations.展开更多
It is important to study the methane transport phenomenon in a longwall panel under descensional ventilation conditions. In this paper the gob area is divided into a number of nodes to represent the rectangular percol...It is important to study the methane transport phenomenon in a longwall panel under descensional ventilation conditions. In this paper the gob area is divided into a number of nodes to represent the rectangular percolating elements. The connections between nodes (elements) become branches,so that a network can be formed. Using the mechanics of porous media fluid flow, the mathematical model of air and gas flows has been established. Based on the existing ground pressure theories,the porosity of the inhomogeneous porous media in the gob can be given. In computer simulation it is considered that air pressure and temperature are functions of position ; air density, viscosity, and natural ventilation pressure are functions of temperature,pressure and methane concentration,and the resistance varies with air density and viscosity. Finally,the calculation results are given to show the differences between ascensional and descensional ventilation methods.展开更多
The ventilation system plays an essential role in underground workings, and improvements in dilution effect to stochastic methane build-up at cul-de-sac of a coalmine require the installation of mixed ventilation syst...The ventilation system plays an essential role in underground workings, and improvements in dilution effect to stochastic methane build-up at cul-de-sac of a coalmine require the installation of mixed ventilation system. For 4-12-1 I N02.8A centrifugal ventilation fan, the characteristic operating function of its mixed ventilation system is calculated from ventilation quantity and total pressure in the actual working status. At cul-de-sac of the reference coalmine, the evolution of methane concentration is a compound Poisson process and equivalent to a Brownian motion for Gaussian distributed increments. Solution of stochastic differential equation driven by mixed ventilation system, with dilution equation for its closure, provides parameters of mine ventilation system for keeping methane concentration within the permissible limit at cul-de-sac of the reference coalmine. These results intend to shed some light on application of blowing-sucking mixed ventilation systems in underground workings, and establish stochastic trends to consider methane control in coalmines.展开更多
The effect of the preparation method on the properties of LaMnO3 and La0.8Sr0.2MnO3 perovskite was studied. Materials were prepared by four methods: sol-gel, chemical combustion, solvothermal and spray pyrolysis and c...The effect of the preparation method on the properties of LaMnO3 and La0.8Sr0.2MnO3 perovskite was studied. Materials were prepared by four methods: sol-gel, chemical combustion, solvothermal and spray pyrolysis and characterized. The effect of the synthesis method on the texture, acid-base character of the surface, reducibility with hydrogen, oxygen desorption, surface composition and catalytic activity for combustion of lean methane was studied. It was found that synthesis method affects physicochemical properties of obtained materials-solvothermally produced materials exhibit well-developed surface area, presence of reactive oxygen species on surface and high catalytic activity for CH4 combustion. Generally, LaMnO3 and La0.8Sr0.2MnO3 perovskites show catalytic activity for lean CH4 combustion comparable or higher than the activity of 0.5 wt.% Pt/Al2O3 but lower than 1 wt.% Pd/Al2O3.展开更多
The control system of a catalytic flow reversal reactor (CFRR) for the mitigation of ventilation air methane was investigated. A one-dimensional heteroge- neous model with a logic-based controller was applied to sim...The control system of a catalytic flow reversal reactor (CFRR) for the mitigation of ventilation air methane was investigated. A one-dimensional heteroge- neous model with a logic-based controller was applied to simulate the CFRR. The simulation results indicated that the controller developed in this work performs well under normal conditions. Air dilution and auxiliary methane injection are effective to avoid the catalyst overheating and reaction extinction caused by prolonged rich and lean feed conditions, respectively. In contrast, the reactor is prone to lose control by adjusting the switching time solely. Air dilution exhibits the effects of two contradictory aspects on the operation of CFRR, i.e., cooling the bed and accumulating heat, though the former is in general more prominent. Lowering the reference temperature for flow reversal can decrease the bed temperature and benefit stable operation under rich methane feed condition.展开更多
Ventilation air methane is one of available resources with a massive reserve.However,most of ventilation air methane is discharged into the air and pollutes the environment.Catalysts with high temperature resistance(&...Ventilation air methane is one of available resources with a massive reserve.However,most of ventilation air methane is discharged into the air and pollutes the environment.Catalysts with high temperature resistance(>800℃)for ventilation air methane are very essential for utilization of the ventilation air methane.We mainly prepared catalysts CeO_(2)/La_(2)CoFeO_(6)and La_(2)CoFeO_(6)/CeO_(2)and comparative samples CeO_(2)and La_(2)CoFeO_(6)by the simple sol-gel method and calcined them under 9000C,and tested the catalytic performance of ventilation air methane combustion under the condition of 5 vol%H_(2)O.The experimental results show that the light-off temperature(T_(1O))and complete combustion temperature(T_(90))of the ventilation air methane combustion reaction of CeO_(2)/La_(2)CoFeO_(6)catalyst are 417.4 and 587.7℃,respectively.T_(1O)and Tgo of La_(2)CoFeO_(6)/CeO_(2)only reach 425.5 and 615.8℃.The T_(10)and T_(9O)of CeO_(2)/La_(2)CoFeO_(6)are 417.4 and 587.7℃,which are lower than those of La_(2)CoFeO_(6)[T_(10)=452.4℃and T_(90)=673.0℃)and La_(2)CoFeO_(6)/CeO_(2)(T_(10)=425.5℃and T_(90)=615.8℃).Therefore,the catalytic performance of the anti-supported rare earth oxide catalyst CeO_(2)/La_(2)CoFeO_(6)is better than that of La_(2)CoFeO_(6)and supported catalyst La_(2)CoFeO_(6)/CeO_(2).展开更多
Flower-like Co3O4 hierarchical microspheres composed of self-assembled porous nanoplates were pre- pared by employing Pluronic F127 block-copolymer as template. The samples were characterized by powder X-ray diffract...Flower-like Co3O4 hierarchical microspheres composed of self-assembled porous nanoplates were pre- pared by employing Pluronic F127 block-copolymer as template. The samples were characterized by powder X-ray diffraction(PXRD), scanning/transmission electron microscopy(SEM/TEM), and nitrogen adsorption-desorption at 77 K. The results show that the catalytic activity of Co3O4 nanoflowers for the combustion of ventilation air methane is higher than that of commercial Co3O4. The superior catalytic performance of this material can be related to its dominantly exposed {112} crystal planes and higher content of surface Co3+.展开更多
文摘BACKGROUND Dexmedetomidine and propofol are two sedatives used for long-term sedation.It remains unclear whether dexmedetomidine provides superior cerebral protection for patients undergoing long-term mechanical ventilation.AIM To compare the neuroprotective effects of dexmedetomidine and propofol for sedation during prolonged mechanical ventilation in patients without brain injury.METHODS Patients who underwent mechanical ventilation for>72 h were randomly assigned to receive sedation with dexmedetomidine or propofol.The Richmond Agitation and Sedation Scale(RASS)was used to evaluate sedation effects,with a target range of-3 to 0.The primary outcomes were serum levels of S100-βand neuron-specific enolase(NSE)every 24 h.The secondary outcomes were remifentanil dosage,the proportion of patients requiring rescue sedation,and the time and frequency of RASS scores within the target range.RESULTS A total of 52 and 63 patients were allocated to the dexmedetomidine group and propofol group,respectively.Baseline data were comparable between groups.No significant differences were identified between groups within the median duration of study drug infusion[52.0(IQR:36.0-73.5)h vs 53.0(IQR:37.0-72.0)h,P=0.958],the median dose of remifentanil[4.5(IQR:4.0-5.0)μg/kg/h vs 4.6(IQR:4.0-5.0)μg/kg/h,P=0.395],the median percentage of time in the target RASS range without rescue sedation[85.6%(IQR:65.8%-96.6%)vs 86.7%(IQR:72.3%-95.3),P=0.592],and the median frequency within the target RASS range without rescue sedation[72.2%(60.8%-91.7%)vs 73.3%(60.0%-100.0%),P=0.880].The proportion of patients in the dexmedetomidine group who required rescue sedation was higher than in the propofol group with statistical significance(69.2%vs 50.8%,P=0.045).Serum S100-βand NSE levels in the propofol group were higher than in the dexmedetomidine group with statistical significance during the first six and five days of mechanical ventilation,respectively(all P<0.05).CONCLUSION Dexmedetomidine demonstrated stronger protective effects on the brain compared to propofol for long-term mechanical ventilation in patients without brain injury.
基金The results presented in this paper are the result of the PICTO research project titled"Production Face Environmental Risk Minimization in Coal and Lignite Mines”,No.800711,financed by the Research Programme of the Research Fund for Coal and Steel(RFCS)and Polish MNiSW No W93/FBWiS/2018 and the statutory research funds of the Institute.
文摘Underground coal mining frequently uses longwalls.The occurrence of a potentially explosive mixture of methane and air is one of the most serious hazards.A large number of papers have applied numerical modeling of methane propagation in research aimed at this problem.To date,none of the CFD simulations has considered the movement of the shearer in the analyses.This paper proposes an adaptation of a method used for the description of the movement of trains in tunnels to a specific geometry of a longwall district.The flow of the air-methane mixture was calculated using the finite volume method,in particular the k-w SST and SAS turbulence models.Due to the movement of the shearer,moving and deforming meshes were used for simulation of unsteady flows.Examples of solutions for two hypothetical cases are presented.Finally,the drawbacks and advantages of presented methods are discussed.Further development with the application of either local mesh variability or overset meshes is outlined.
文摘Methane drainage is used in Polish coal mines in order to reduce mine methane emission as well as to keep methane concentration in mine workings at safe levels. This article describes the method of methane drainage used in longwall 2 in seam 506. In Poland, coal seams are frequently mined in difficult conditions of very high methane hazard. Under such situations, methane is drained by means of parallel ventilation headings. This paper shows the influence of a specific ventilation system on the drainage efficiency at longwall 2 in seam 506. At this longwall, measurements of methane emission and the efficiency of drained methane were conducted. They consisted in gauging methane concentration, air velocity, absolute air pressure and the amount of methane removed via a drainage system. Experimental data were used to estimate the variations in absolute methane-bearing capacity, ventilation air methane and most importantly, to gauge the efficiency of methane drainage.
文摘In order to solve coal and gas outbursts during mining coal seam,studying on related problems were carried out. According to the theories of mining upper protective layer,proper mining plan were designed and performed through field experiment. By means of examining several parameters obtained from the field experiment,the protective effects were evaluated and the protective scope and related parameters were determined. The results of field experiment show that the danger of outbursts was evidently eliminated and the method of mining protective layers is effective and the safety and economic benefits are remarkable. The research has really applied worth and will give beneficial references to mining area with analogous conditions.
文摘In order to prevent coal and methane outbursts, mining protective layers is an effective means, yet no precedents of mining multiple protective layers is discoveried in seams which includes several seams are prone to outburst like Xinzhuangzi Mine. This paper perfected the related theories through analyzing mining multiple upper protective layers. By means of examining several parameters, it synthetically analyzed and ascer- tains the protected effectiveness and scope and reasonable parameters, finally obtained the specific indexes and effectiveness of mining multiple protective layers in coal seams cluster.
基金financial support from McGill University-Canada and NSERC-Discovery Grant RGPIN-2015-03945
文摘In underground coal mines, uncontrolled accumulation of methane and fine coal dust often leads to serious incidents such as explosion. Therefore, methane and dust dispersion in underground mines is closely monitored and strictly regulated. Accordingly, significant efforts have been devoted to study methane and dust dispersion in underground mines. In this study, methane emission and dust concentration are numerically investigated using a computational fluid dynamics(CFD) approach. Various possible scenarios of underground mine configurations are evaluated. The results indicate that the presence of continuous miner adversely affects the air flow and leads to increased methane and dust concentrations.Nevertheless, it is found that such negative effect can be minimized or even neutralized by operating the scrubber fan in suction mode. In addition, it was found that the combination of scrubber fan in suction mode and brattice results in the best performance in terms of methane and dust removal from the mining face.
文摘Knowledge of the airflow patterns and methane distributions at a continuous miner face under different ventilation conditions can minimize the risks of explosion and injury to miners by accurately forecasting potentially hazardous face methane levels. This study focused on validating a series of computational fluid dynamics(CFD) models using full-scale ventilation gallery data that assessed how curtain setback distance impacted airflow patterns and methane distributions at an empty mining face(no continuous miner present). Three CFD models of face ventilation with 4.6, 7.6 and 10.7 m(15, 25, and 35 ft) blowing curtain setback distances were constructed and validated with experimental data collected in a full-scale ventilation test facility. Good agreement was obtained between the CFD simulation results and this data.Detailed airflow and methane distribution information are provided. Elevated methane zones at the working faces were identified with the three curtain setback distances. Visualization of the setback distance impact on the face methane distribution was performed by utilizing the post-processing capability of the CFD software.
文摘An increase in methane,spontaneous fire and bumping hazards in Polish hard coal mines,observed in the last two decades,led to the need to elaborate the tools allowing proper selection of a range of preventive measures to fight them at the stage of designing coal extraction.Designing the production of a coal seams in the conditions of associated methane and spontaneous fires hazards in Polish hard coal mines requires elaboration of the design standards for coal panels in gassy coal seams.This paper presents the guidelines on how to design production in the conditions of associated methane and spontaneous fire hazards.Presented tools and methodology since the very first research were many times verified by daily mining operations in the conditions of associated methane and spontaneous fire hazards,which confirms their significant contribution to the development of safe and economical mining operations.
文摘It is important to study the methane transport phenomenon in a longwall panel under descensional ventilation conditions. In this paper the gob area is divided into a number of nodes to represent the rectangular percolating elements. The connections between nodes (elements) become branches,so that a network can be formed. Using the mechanics of porous media fluid flow, the mathematical model of air and gas flows has been established. Based on the existing ground pressure theories,the porosity of the inhomogeneous porous media in the gob can be given. In computer simulation it is considered that air pressure and temperature are functions of position ; air density, viscosity, and natural ventilation pressure are functions of temperature,pressure and methane concentration,and the resistance varies with air density and viscosity. Finally,the calculation results are given to show the differences between ascensional and descensional ventilation methods.
文摘The ventilation system plays an essential role in underground workings, and improvements in dilution effect to stochastic methane build-up at cul-de-sac of a coalmine require the installation of mixed ventilation system. For 4-12-1 I N02.8A centrifugal ventilation fan, the characteristic operating function of its mixed ventilation system is calculated from ventilation quantity and total pressure in the actual working status. At cul-de-sac of the reference coalmine, the evolution of methane concentration is a compound Poisson process and equivalent to a Brownian motion for Gaussian distributed increments. Solution of stochastic differential equation driven by mixed ventilation system, with dilution equation for its closure, provides parameters of mine ventilation system for keeping methane concentration within the permissible limit at cul-de-sac of the reference coalmine. These results intend to shed some light on application of blowing-sucking mixed ventilation systems in underground workings, and establish stochastic trends to consider methane control in coalmines.
基金financed by a statutory activity subsidy from the Polish Ministry of Science and Higher Education for the Faculty of Chemistry of Wroclaw University of Technology.
文摘The effect of the preparation method on the properties of LaMnO3 and La0.8Sr0.2MnO3 perovskite was studied. Materials were prepared by four methods: sol-gel, chemical combustion, solvothermal and spray pyrolysis and characterized. The effect of the synthesis method on the texture, acid-base character of the surface, reducibility with hydrogen, oxygen desorption, surface composition and catalytic activity for combustion of lean methane was studied. It was found that synthesis method affects physicochemical properties of obtained materials-solvothermally produced materials exhibit well-developed surface area, presence of reactive oxygen species on surface and high catalytic activity for CH4 combustion. Generally, LaMnO3 and La0.8Sr0.2MnO3 perovskites show catalytic activity for lean CH4 combustion comparable or higher than the activity of 0.5 wt.% Pt/Al2O3 but lower than 1 wt.% Pd/Al2O3.
文摘The control system of a catalytic flow reversal reactor (CFRR) for the mitigation of ventilation air methane was investigated. A one-dimensional heteroge- neous model with a logic-based controller was applied to simulate the CFRR. The simulation results indicated that the controller developed in this work performs well under normal conditions. Air dilution and auxiliary methane injection are effective to avoid the catalyst overheating and reaction extinction caused by prolonged rich and lean feed conditions, respectively. In contrast, the reactor is prone to lose control by adjusting the switching time solely. Air dilution exhibits the effects of two contradictory aspects on the operation of CFRR, i.e., cooling the bed and accumulating heat, though the former is in general more prominent. Lowering the reference temperature for flow reversal can decrease the bed temperature and benefit stable operation under rich methane feed condition.
基金Project supported by the National Natural Science Foundation of China(21263008)Inner Mongolia Autonomous Region Innovation Guidance Foundation of China(20170934).
文摘Ventilation air methane is one of available resources with a massive reserve.However,most of ventilation air methane is discharged into the air and pollutes the environment.Catalysts with high temperature resistance(>800℃)for ventilation air methane are very essential for utilization of the ventilation air methane.We mainly prepared catalysts CeO_(2)/La_(2)CoFeO_(6)and La_(2)CoFeO_(6)/CeO_(2)and comparative samples CeO_(2)and La_(2)CoFeO_(6)by the simple sol-gel method and calcined them under 9000C,and tested the catalytic performance of ventilation air methane combustion under the condition of 5 vol%H_(2)O.The experimental results show that the light-off temperature(T_(1O))and complete combustion temperature(T_(90))of the ventilation air methane combustion reaction of CeO_(2)/La_(2)CoFeO_(6)catalyst are 417.4 and 587.7℃,respectively.T_(1O)and Tgo of La_(2)CoFeO_(6)/CeO_(2)only reach 425.5 and 615.8℃.The T_(10)and T_(9O)of CeO_(2)/La_(2)CoFeO_(6)are 417.4 and 587.7℃,which are lower than those of La_(2)CoFeO_(6)[T_(10)=452.4℃and T_(90)=673.0℃)and La_(2)CoFeO_(6)/CeO_(2)(T_(10)=425.5℃and T_(90)=615.8℃).Therefore,the catalytic performance of the anti-supported rare earth oxide catalyst CeO_(2)/La_(2)CoFeO_(6)is better than that of La_(2)CoFeO_(6)and supported catalyst La_(2)CoFeO_(6)/CeO_(2).
基金Supported by the National Natural Science Foundation of China(Nos.21671147, 51203109) and the Funding of the State Key Laboratory of Coal and Coalbed Methane Co-mining, China.
文摘Flower-like Co3O4 hierarchical microspheres composed of self-assembled porous nanoplates were pre- pared by employing Pluronic F127 block-copolymer as template. The samples were characterized by powder X-ray diffraction(PXRD), scanning/transmission electron microscopy(SEM/TEM), and nitrogen adsorption-desorption at 77 K. The results show that the catalytic activity of Co3O4 nanoflowers for the combustion of ventilation air methane is higher than that of commercial Co3O4. The superior catalytic performance of this material can be related to its dominantly exposed {112} crystal planes and higher content of surface Co3+.