Hybrid Power-line/Visible-light Communication(HPVC)network has been one of the most promising Cooperative Communication(CC)technologies for constructing Smart Home due to its superior communication reliability and har...Hybrid Power-line/Visible-light Communication(HPVC)network has been one of the most promising Cooperative Communication(CC)technologies for constructing Smart Home due to its superior communication reliability and hardware efficiency.Current research on HPVC networks focuses on the performance analysis and optimization of the Physical(PHY)layer,where the Power Line Communication(PLC)component only serves as the backbone to provide power to light Emitting Diode(LED)devices.So designing a Media Access Control(MAC)protocol remains a great challenge because it allows both PLC and Visible Light Communication(VLC)components to operate data transmission,i.e.,to achieve a true HPVC network CC.To solve this problem,we propose a new HPC network MAC protocol(HPVC MAC)based on Carrier Sense Multiple Access/Collision Avoidance(CSMA/CA)by combining IEEE 802.15.7 and IEEE 1901 standards.Firstly,we add an Additional Assistance(AA)layer to provide the channel selection strategies for sensor stations,so that they can complete data transmission on the selected channel via the specified CSMA/CA mechanism,respectively.Based on this,we give a detailed working principle of the HPVC MAC,followed by the construction of a joint analytical model for mathematicalmathematical validation of the HPVC MAC.In the modeling process,the impacts of PHY layer settings(including channel fading types and additive noise feature),CSMA/CA mechanisms of 802.15.7 and 1901,and practical configurations(such as traffic rate,transit buffer size)are comprehensively taken into consideration.Moreover,we prove the proposed analytical model has the solvability.Finally,through extensive simulations,we characterize the HPVC MAC performance under different system parameters and verify the correctness of the corresponding analytical model with an average error rate of 4.62%between the simulation and analytical results.展开更多
A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The ne...A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The networkcomprises an encoder module, fusion layer, decoder module, and edge improvementmodule. The encoder moduleutilizes an enhanced Inception module for shallow feature extraction, then combines Res2Net and Transformerto achieve deep-level co-extraction of local and global features from the original picture. An edge enhancementmodule (EEM) is created to extract significant edge features. A modal maximum difference fusion strategy isintroduced to enhance the adaptive representation of information in various regions of the source image, therebyenhancing the contrast of the fused image. The encoder and the EEM module extract features, which are thencombined in the fusion layer to create a fused picture using the decoder. Three datasets were chosen to test thealgorithmproposed in this paper. The results of the experiments demonstrate that the network effectively preservesbackground and detail information in both infrared and visible images, yielding superior outcomes in subjectiveand objective evaluations.展开更多
To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed...To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed.The region attention module is meant to extract the background feature map based on the distinct properties of the background feature map and the detail feature map.A multi-scale convolution attention module is suggested to enhance the communication of feature information.At the same time,the feature transformation module is introduced to learn more robust feature representations,aiming to preserve the integrity of image information.This study uses three available datasets from TNO,FLIR,and NIR to perform thorough quantitative and qualitative trials with five additional algorithms.The methods are assessed based on four indicators:information entropy(EN),standard deviation(SD),spatial frequency(SF),and average gradient(AG).Object detection experiments were done on the M3FD dataset to further verify the algorithm’s performance in comparison with five other algorithms.The algorithm’s accuracy was evaluated using the mean average precision at a threshold of 0.5(mAP@0.5)index.Comprehensive experimental findings show that CAEFusion performs well in subjective visual and objective evaluation criteria and has promising potential in downstream object detection tasks.展开更多
To investigate the potential of utilizing visible spectral imaging for controlling the plasma boundary shape during stable operation of plasma in future tokamak, a D_α band symmetric visible light diagnostic system w...To investigate the potential of utilizing visible spectral imaging for controlling the plasma boundary shape during stable operation of plasma in future tokamak, a D_α band symmetric visible light diagnostic system was designed and implemented on the Experimental Advanced Superconducting Tokamak(EAST). This system leverages two symmetric optics for joint plasma imaging. The optical system exhibits a spatial resolution less than 2 mm at the poloidal cross-section, distortion within the field of view below 10%, and relative illumination of 91%.The high-quality images obtained enable clear observation of both the plasma boundary position and the characteristics of components within the vacuum vessel. Following system calibration and coordinate transformation, the image coordinate boundary features are mapped to the tokamak coordinate system. Utilizing this system, the plasma boundary was reconstructed, and the resulting representation showed alignment with the EFIT(Equilibrium Fitting) results. This underscores the system's superior performance in boundary reconstruction applications and provides a diagnostic foundation for boundary shape control based on visible spectral imaging.展开更多
Real-time,contact-free temperature monitoring of low to medium range(30℃-150℃)has been extensively used in industry and agriculture,which is usually realized by costly infrared temperature detection methods.This pap...Real-time,contact-free temperature monitoring of low to medium range(30℃-150℃)has been extensively used in industry and agriculture,which is usually realized by costly infrared temperature detection methods.This paper proposes an alternative approach of extracting temperature information in real time from the visible light images of the monitoring target using a convolutional neural network(CNN).A mean-square error of<1.119℃was reached in the temperature measurements of low to medium range using the CNN and the visible light images.Imaging angle and imaging distance do not affect the temperature detection using visible optical images by the CNN.Moreover,the CNN has a certain illuminance generalization ability capable of detection temperature information from the images which were collected under different illuminance and were not used for training.Compared to the conventional machine learning algorithms mentioned in the recent literatures,this real-time,contact-free temperature measurement approach that does not require any further image processing operations facilitates temperature monitoring applications in the industrial and civil fields.展开更多
Visible Light Communication( VLC) based on LED is a new wireless communication technology with high response rate and good modulation characteristics in the wavelengths of 380- 780 nm. Compared with conventional metho...Visible Light Communication( VLC) based on LED is a new wireless communication technology with high response rate and good modulation characteristics in the wavelengths of 380- 780 nm. Compared with conventional methods,the waveband of VLC is harmless to human and safe to communication because of no magnetism radiation. An audio information transmission system using LED traffic lights is presented based on VLC technology. The system is consisted of transmitting terminal,receiving terminal and communication channel. Some experiments were made under real communication environment. The experimental results showed that the traffic information transmission system works steadily with good communication quality and achieves the purpose of transmitting audio information through LED traffic lights,with a data transfer rate up to 250 kbps over a distance of 5 meters.展开更多
Purification of emerging heavy metal antimony contaminated water based on advanced ingenious strategies.An activated modified coconut shell charcoal(CSC)was synthesized and evaluated as a substrate-supported loaded or...Purification of emerging heavy metal antimony contaminated water based on advanced ingenious strategies.An activated modified coconut shell charcoal(CSC)was synthesized and evaluated as a substrate-supported loaded organic photovoltaic material,PM6:PYIT:PM6-b-PYIT,to prepare a surprisingly highly efficient,stable,environmentally friendly,and recyclable organic photocatalyst(CSC–N–P.P.P),which showed excellent effects on the simultaneous removal of Sb(Ⅲ)and Sb(Ⅴ).The removal efficiency of CSC-N-P.P.P on Sb(Ⅲ)and Sb(Ⅴ)reached an amazing 99.9%in quite a short duration of 15 min.At the same time,under ppb level and indoor visible light(~1 W m^(2)),it can be treated to meet the drinking water standards set by the European Union and the U.S.National Environmental Protection Agency in 5 min,and even after 25 cycles of recycling,the efficiency is still maintained at about 80%,in addition to the removal of As(Ⅲ),Cd(Ⅱ),Cr(Ⅵ),and Pb(Ⅱ)can also be realized.The catalyst not only solves the problems of low reuse rate,difficult structure adjustment and high energy consumption of traditional photocatalysts but also has strong applicability and practical significance.The pioneering approach provides a much-needed solution strategy for removing highly toxic heavy metal antimony pollution from the environment.展开更多
Radio waves and strong magneticfields are used by Magnetic Reso-nance Imaging(MRI)scanners to detect tumours,wounds and visualize detailed images of the human body.Wi-Fi and other medical devices placed in the MRI pro...Radio waves and strong magneticfields are used by Magnetic Reso-nance Imaging(MRI)scanners to detect tumours,wounds and visualize detailed images of the human body.Wi-Fi and other medical devices placed in the MRI procedure room produces RF noise in MRI Images.The RF noise is the result of electromagnetic emissions produced by Wi-Fi and other medical devices that interfere with the operation of the MRI scanner.Existing techniques for RF noise mitigation involve RF shielding techniques which induce eddy currents that affect the MRI image quality.RF shielding techniques are complex and lead to RF leak-age.VLC(Visible light Communication)is an emerging and efficient technology to avoid RF interference near MRI scanners.Range augmentation with power conservation of the LED is a big challenge in existing VLC systems.The major objective of the proposed work is to develop an intelligent-MRI room design without RF interference using visible light communication and enhance the distance between VLC transmitter and VLC receiver.In this paper,it is proposed to implement VLC using On-Off keying modulation and enhance distance using large active area photodiodes with Automatic Gain Control Circuit(AGC)using software and hardware.The performance of the proposed intelligent MRI-VLC system is analyzed by calculating Bit Error Rate at an inclined distance of 50 cm away from line of sight of the LED.The Experimental results showed that the maximum distance achieved was 400 cm at Bit Error Rate(BER)of 1.5×10^(-5).展开更多
We demonstrate the synthesis of C-Cl-codoped titania/attapulgite(TiO2/ATT) composites containing a mixture of TiO2 phases by a facile sol-gel method at 70 ℃ using titanium tetraisopropoxide as the TiO2 precursor an...We demonstrate the synthesis of C-Cl-codoped titania/attapulgite(TiO2/ATT) composites containing a mixture of TiO2 phases by a facile sol-gel method at 70 ℃ using titanium tetraisopropoxide as the TiO2 precursor and ATT as a support for the TiO2 nanoparticles.The photocatalytic activity of the C-Cl-codoped TiO2/ATT composites with mixed anatase/brookite/rutile phases obtained at pH= 3.0 was much higher than that of commercially available Degussa P25 for the photocatalytic degradation of acid red G under visible-light irradiation.The excellent photocatalytic activity of the developed composite originates from the nonmetal codoping,which extends the absorption edge of TiO2 into visible region,and the presence of multiple phases,which slow the recombination of photoexcited electron/hole pairs.The formation of hydroxyl radicals during the photocatalytic degradation process was detected by photoluminescence probing using terephthalic acid.A mechanism for photocatalysis over the C-Cl-codoped TiO2/ATT composites was proposed.展开更多
In order to develop the high photocatalytic activity of TiO2 under visible light as that under ultraviolet light and make it easy to be separated from treated liquor, a visible light response and spherical activated c...In order to develop the high photocatalytic activity of TiO2 under visible light as that under ultraviolet light and make it easy to be separated from treated liquor, a visible light response and spherical activated carbon (SAC) supported photocatalyst doped with upconversion luminescence agent Er3+:YAlO3 was prepared by immobilizing Er3+:YAlO3/TiO2, which was obtained by combination of Er3+:YAlO3 and TiO2 using sol-gel method, on the surface of SAC. The crystal phase composition, surface structure and element distribution, and light absorption of the new photocatalysts were examined by X-ray diffraction (XRD), energy dispersive X-ray spectra (EDS) analysis, scanning electron microscopy (SEM) and fluorescence spectra analysis (FSA). The photocatalytic oxidation activity of the photocatalysts was also evaluated by the photodegradation of methyl orange (MO) in aqueous solution under visible light irradiation from a LED lamp (λ400 nm). The results showed that Er3+:YAlO3 could perform as the upconversion luminescence agent which converts the visible light up to ultraviolet light. The Er3+:YAlO3/TiO2 calcinated at 700 °C revealed the highest photocatalytic activity. The apparent reaction rate constant could reach 0.0197 min-1 under visible light irradiation.展开更多
Formation of a p–n heterojunction rather than p-type or n-type semiconductors can enhance the separation of photogenerated electrons and holes and increase the quantum efficiency of photocatalytic reactions owing to ...Formation of a p–n heterojunction rather than p-type or n-type semiconductors can enhance the separation of photogenerated electrons and holes and increase the quantum efficiency of photocatalytic reactions owing to the difference of the electric potential in the inner electric field near the junction,pointing from n toward p. n-Ag3PO4/p-Ag2CO3 p–n heterojunction composites are prepared through a facile coprecipitation process. The obtained Ag3PO4/Ag2CO3 p–n heterojunctions exhibit excellent photocatalytic performance in the removal of rhodamine B(RhB) compared with Ag3PO4 and Ag2CO3. The 40%-Ag3PO4/Ag2CO3 composite photocatalyst(40 mol% Ag3PO4 and 60 mol% Ag2CO3) exhibits the best photocatalytic activity under visible light,demonstrating the ability to completely degrade RhB within 15 min. Transient photovoltage characterization and an active species trapping experiment further indicate that the formation of a p–n heterojunction structure can greatly enhance the separation efficiency of photogenerated carriers and produce more free h+active species,which is the predominant contributor for RhB removal.展开更多
Heterostructured BiOI@La(OH)3 nanorod photocatalysts were prepared by a facile chemical impregnation method.The enhanced visible light absorption and charge carrier separation can be simultaneously realized after th...Heterostructured BiOI@La(OH)3 nanorod photocatalysts were prepared by a facile chemical impregnation method.The enhanced visible light absorption and charge carrier separation can be simultaneously realized after the introduction of BiOI particles into La(OH)3 nanorods.The BiOI@La(OH)3 composites were applied for visible light photocatalytic oxidization of NO in air and exhibited an enhanced activity compared with BiOI and pure La(OH)3 nanorods.The results show that the energy levels between the La(OH)3 and BiOI phases matched well with each other,thus forming a heterojunctioned BiOI@La(OH)3 structure.This band structure matching could promote the separation and transfer of photoinduced electron-hole pairs at the interface,resulting in enhanced photocatalytic performance under visible light irradiation.The photocatalytic performance of BiOI@La(OH)3 is shown to be dependent on the mass ratio of BiOI to La(OH)3.The highest photocatalytic performance can be achieved when the mass ratio of BiOI to La(OH)3 is controlled at 1.5.A further increase of the mass ratio of BiOI weakened the redox abilities of the photogenerated charge carriers.A new photocatalytic mechanism for BiOI@La(OH)3 heterostructures is proposed,which is directly related to the efficient separation of photogenerated charge carriers by the heterojunction.Importantly,the as-prepared BiOI@La(OH)3 heterostructures exhibited a high photochemical stability after multiple reaction runs.Our findings demonstrate that BiOI is an effective component for the formation of a heterostructure with the properties of a wide bandgap semiconductor,which is of great importance for extending the light absorption and photocatalytic activity of wide bandgap semiconductors into visible light region.展开更多
particle size (5.0 nm), large specific surface area (213.45 m1 2/g), and efficient response to broadband light over the entire ultraviolet-visible spectrum with a narrow band gap of 1.84 eV. In addition, TiO2 -18...particle size (5.0 nm), large specific surface area (213.45 m1 2/g), and efficient response to broadband light over the entire ultraviolet-visible spectrum with a narrow band gap of 1.84 eV. In addition, TiO2 -180℃ exhibited the optimal reaction rate constant for the degradation of methylene blue (0.08287 mg/(Lmin)), which is six times higher than that of the mixed rutile/anatase phase TiO2 photocatalytic standard P25 (0.01342 mg/(L min)). Furthermore, cycling photodegradation ex-periments confirmed the stability and reusability of this catalyst. The unique physicochemical properties resulting from the low-temperature preparation of TiO2 -180℃, including its broadband visible absorption associated with a high concentration of oxygen vacancies, large surface area, and enriched surface -OH/H2O may be responsible for this excellent photocatalytic performance. The use of as-prepared TiO2 -180℃ for practical applications is expected after further optimization.展开更多
Graphitic carbon nitride(g-C3N4) with efficient photocatalytic activity was synthesized through thermal polymerization of thiourea with the addition of water(CN-W) or ethanol(CN-E) at 550 ℃for 2 h.The physicoch...Graphitic carbon nitride(g-C3N4) with efficient photocatalytic activity was synthesized through thermal polymerization of thiourea with the addition of water(CN-W) or ethanol(CN-E) at 550 ℃for 2 h.The physicochemical properties of the g-C3N4 were investigated by X-ray diffraction,transmission electron microscopy,ultraviolet-visible spectroscopy,photoluminescence spectroscopy,diffuse-reflection spectroscopy,BET and BJH surface area characterization,and elemental analysis.The carbon content was found to have self-doped into the g-C3N4 matrix during the thermal polymerization of thiourea and ethanol.CN-W and CN-E showed considerably enhanced visible-light photocatalytic activity,with NO removal percentages of 37.2%and 48.3%,respectively.Compared with pure g-C3N4,both the short and long lifetimes of the charge carriers in CN-W and CN-E were found to be prolonged.The mechanism of improved visible-light photocatalytic activity was deduced.The present work may provide a facile route to optimize the microstructure of g-C3N4photocatalysts for high-performance environmental and energy applications.展开更多
Photocatalysis is regarded as an ideal technology for solving the urgent environmental and energy issues that we face today.Among the reported photocatalysts,molybdenum disulfide(MoS2) is very promising for applicat...Photocatalysis is regarded as an ideal technology for solving the urgent environmental and energy issues that we face today.Among the reported photocatalysts,molybdenum disulfide(MoS2) is very promising for applications in hydrogen production and pollutant photodegradation.However,its lack of active sites and the difficulty of recovering catalysts in powder form have hindered its wide application.Here,we report the successful preparation of a macroscopic visible-light responsive MoS2/reduced graphene oxide(MoS2/RGO) aerogel.The obtained MoS2/RGO aerogel exhibits enhanced photocatalytic activity towards hydrogen production and photoreduction of Cr(Ⅵ) in comparison with the MoS2 powder.In addition,the low density(56.1 mg/cm^3) of the MoS2/RGO aerogel enables it to be used as an efficient adsorption material for organic pollutants.Our results demonstrate that this very promising multifunctional aerogel has potential applications in environmental remediation and clean energy production.展开更多
An immobilized Cu2O/g-C3N4 heterojunction film was successfully made on an FTO substrate by electrophoretic deposition of g-C3N4 on a Cu2O thin film.The photoelectrochemical(PEC) performance for water splitting by t...An immobilized Cu2O/g-C3N4 heterojunction film was successfully made on an FTO substrate by electrophoretic deposition of g-C3N4 on a Cu2O thin film.The photoelectrochemical(PEC) performance for water splitting by the Cu2O/g-C3N4 film was better than pure g-C3N4 and pure Cu2O film.Under-0.4 V external bias and visible light irradiation,the photocurrent density and PEC hydrogen evolution efficiency of the optimized Cu2O/g-C3N4 film was-1.38 mA/cm^2 and 0.48 mL h^-1 cm^-2,respectively.The enhanced PEC performance of Cu2O/g-C3N4 was attributed to the synergistic effect of light coupling and a matching energy band structure between g-C3N4 and Cu2O as well as the external bias.展开更多
High power and high-slope efficiency 650nm band real-refractive-index ridge w aveguide AlGaInP laser diodes with compressive strained MQW active layer are for med by pure Ar ion beam etching process.Symmetric laser me...High power and high-slope efficiency 650nm band real-refractive-index ridge w aveguide AlGaInP laser diodes with compressive strained MQW active layer are for med by pure Ar ion beam etching process.Symmetric laser mesas with high perpendi cularity,which are impossible to obtain by traditional wet etching method due to the use of a 15°-misoriented substrate,are obtained by this dry etching metho d.Laser diodes with 4μm wide,600μm long and 10%/90% coat are fabricated.Th e typical threshold current of these devices is 46mA at room temperature,and a s table fundamental-mode operation over 40mW is obtained.Very high slope efficien cy of 1.4W/A at 10mW and 1.1W/A at 40mW are realized.展开更多
基金supported by the National Natural Science Foundation of China(No.61772386)National Key Research and Development Project(No.2018YFB1305001)Fundamental Research Funds for the Central Universities(No.KJ02072021-0119).
文摘Hybrid Power-line/Visible-light Communication(HPVC)network has been one of the most promising Cooperative Communication(CC)technologies for constructing Smart Home due to its superior communication reliability and hardware efficiency.Current research on HPVC networks focuses on the performance analysis and optimization of the Physical(PHY)layer,where the Power Line Communication(PLC)component only serves as the backbone to provide power to light Emitting Diode(LED)devices.So designing a Media Access Control(MAC)protocol remains a great challenge because it allows both PLC and Visible Light Communication(VLC)components to operate data transmission,i.e.,to achieve a true HPVC network CC.To solve this problem,we propose a new HPC network MAC protocol(HPVC MAC)based on Carrier Sense Multiple Access/Collision Avoidance(CSMA/CA)by combining IEEE 802.15.7 and IEEE 1901 standards.Firstly,we add an Additional Assistance(AA)layer to provide the channel selection strategies for sensor stations,so that they can complete data transmission on the selected channel via the specified CSMA/CA mechanism,respectively.Based on this,we give a detailed working principle of the HPVC MAC,followed by the construction of a joint analytical model for mathematicalmathematical validation of the HPVC MAC.In the modeling process,the impacts of PHY layer settings(including channel fading types and additive noise feature),CSMA/CA mechanisms of 802.15.7 and 1901,and practical configurations(such as traffic rate,transit buffer size)are comprehensively taken into consideration.Moreover,we prove the proposed analytical model has the solvability.Finally,through extensive simulations,we characterize the HPVC MAC performance under different system parameters and verify the correctness of the corresponding analytical model with an average error rate of 4.62%between the simulation and analytical results.
文摘A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The networkcomprises an encoder module, fusion layer, decoder module, and edge improvementmodule. The encoder moduleutilizes an enhanced Inception module for shallow feature extraction, then combines Res2Net and Transformerto achieve deep-level co-extraction of local and global features from the original picture. An edge enhancementmodule (EEM) is created to extract significant edge features. A modal maximum difference fusion strategy isintroduced to enhance the adaptive representation of information in various regions of the source image, therebyenhancing the contrast of the fused image. The encoder and the EEM module extract features, which are thencombined in the fusion layer to create a fused picture using the decoder. Three datasets were chosen to test thealgorithmproposed in this paper. The results of the experiments demonstrate that the network effectively preservesbackground and detail information in both infrared and visible images, yielding superior outcomes in subjectiveand objective evaluations.
文摘To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed.The region attention module is meant to extract the background feature map based on the distinct properties of the background feature map and the detail feature map.A multi-scale convolution attention module is suggested to enhance the communication of feature information.At the same time,the feature transformation module is introduced to learn more robust feature representations,aiming to preserve the integrity of image information.This study uses three available datasets from TNO,FLIR,and NIR to perform thorough quantitative and qualitative trials with five additional algorithms.The methods are assessed based on four indicators:information entropy(EN),standard deviation(SD),spatial frequency(SF),and average gradient(AG).Object detection experiments were done on the M3FD dataset to further verify the algorithm’s performance in comparison with five other algorithms.The algorithm’s accuracy was evaluated using the mean average precision at a threshold of 0.5(mAP@0.5)index.Comprehensive experimental findings show that CAEFusion performs well in subjective visual and objective evaluation criteria and has promising potential in downstream object detection tasks.
基金supported by the National MCF Energy R&D Program of China (Nos. 2018YFE0302103 and 2018YFE 0302100)National Natural Science Foundation of China (Nos. 12205195 and 11975277)。
文摘To investigate the potential of utilizing visible spectral imaging for controlling the plasma boundary shape during stable operation of plasma in future tokamak, a D_α band symmetric visible light diagnostic system was designed and implemented on the Experimental Advanced Superconducting Tokamak(EAST). This system leverages two symmetric optics for joint plasma imaging. The optical system exhibits a spatial resolution less than 2 mm at the poloidal cross-section, distortion within the field of view below 10%, and relative illumination of 91%.The high-quality images obtained enable clear observation of both the plasma boundary position and the characteristics of components within the vacuum vessel. Following system calibration and coordinate transformation, the image coordinate boundary features are mapped to the tokamak coordinate system. Utilizing this system, the plasma boundary was reconstructed, and the resulting representation showed alignment with the EFIT(Equilibrium Fitting) results. This underscores the system's superior performance in boundary reconstruction applications and provides a diagnostic foundation for boundary shape control based on visible spectral imaging.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61975072 and 12174173)the Natural Science Foundation of Fujian Province,China (Grant Nos.2022H0023,2022J02047,ZZ2023J20,and 2022G02006)。
文摘Real-time,contact-free temperature monitoring of low to medium range(30℃-150℃)has been extensively used in industry and agriculture,which is usually realized by costly infrared temperature detection methods.This paper proposes an alternative approach of extracting temperature information in real time from the visible light images of the monitoring target using a convolutional neural network(CNN).A mean-square error of<1.119℃was reached in the temperature measurements of low to medium range using the CNN and the visible light images.Imaging angle and imaging distance do not affect the temperature detection using visible optical images by the CNN.Moreover,the CNN has a certain illuminance generalization ability capable of detection temperature information from the images which were collected under different illuminance and were not used for training.Compared to the conventional machine learning algorithms mentioned in the recent literatures,this real-time,contact-free temperature measurement approach that does not require any further image processing operations facilitates temperature monitoring applications in the industrial and civil fields.
基金Sponsored by the National Science and Technology Innovation Fund for Small and Medium Enterprises(Grant No.10C26211200144)Tianjin Science and Technology Key Supporting Projects(Grant No.10ZCGYGX18300)
文摘Visible Light Communication( VLC) based on LED is a new wireless communication technology with high response rate and good modulation characteristics in the wavelengths of 380- 780 nm. Compared with conventional methods,the waveband of VLC is harmless to human and safe to communication because of no magnetism radiation. An audio information transmission system using LED traffic lights is presented based on VLC technology. The system is consisted of transmitting terminal,receiving terminal and communication channel. Some experiments were made under real communication environment. The experimental results showed that the traffic information transmission system works steadily with good communication quality and achieves the purpose of transmitting audio information through LED traffic lights,with a data transfer rate up to 250 kbps over a distance of 5 meters.
基金support from the Scientific and Technological Bases and Talents of Guangxi(Guike AD21238027)support from Doctoral and master's degree innovation projects+1 种基金T.Liu thanks the Training Project of High-level Professional and Technical Talents of Guangxi University and Natural Science and Technology Innovation Development Multiplication Program of Guangxi University(2022BZRC006)D.Xue thanks the support from International(regional)Cooperation and Exchange Projects of the National Natural Science Foundation of China(52220105010).
文摘Purification of emerging heavy metal antimony contaminated water based on advanced ingenious strategies.An activated modified coconut shell charcoal(CSC)was synthesized and evaluated as a substrate-supported loaded organic photovoltaic material,PM6:PYIT:PM6-b-PYIT,to prepare a surprisingly highly efficient,stable,environmentally friendly,and recyclable organic photocatalyst(CSC–N–P.P.P),which showed excellent effects on the simultaneous removal of Sb(Ⅲ)and Sb(Ⅴ).The removal efficiency of CSC-N-P.P.P on Sb(Ⅲ)and Sb(Ⅴ)reached an amazing 99.9%in quite a short duration of 15 min.At the same time,under ppb level and indoor visible light(~1 W m^(2)),it can be treated to meet the drinking water standards set by the European Union and the U.S.National Environmental Protection Agency in 5 min,and even after 25 cycles of recycling,the efficiency is still maintained at about 80%,in addition to the removal of As(Ⅲ),Cd(Ⅱ),Cr(Ⅵ),and Pb(Ⅱ)can also be realized.The catalyst not only solves the problems of low reuse rate,difficult structure adjustment and high energy consumption of traditional photocatalysts but also has strong applicability and practical significance.The pioneering approach provides a much-needed solution strategy for removing highly toxic heavy metal antimony pollution from the environment.
文摘Radio waves and strong magneticfields are used by Magnetic Reso-nance Imaging(MRI)scanners to detect tumours,wounds and visualize detailed images of the human body.Wi-Fi and other medical devices placed in the MRI procedure room produces RF noise in MRI Images.The RF noise is the result of electromagnetic emissions produced by Wi-Fi and other medical devices that interfere with the operation of the MRI scanner.Existing techniques for RF noise mitigation involve RF shielding techniques which induce eddy currents that affect the MRI image quality.RF shielding techniques are complex and lead to RF leak-age.VLC(Visible light Communication)is an emerging and efficient technology to avoid RF interference near MRI scanners.Range augmentation with power conservation of the LED is a big challenge in existing VLC systems.The major objective of the proposed work is to develop an intelligent-MRI room design without RF interference using visible light communication and enhance the distance between VLC transmitter and VLC receiver.In this paper,it is proposed to implement VLC using On-Off keying modulation and enhance distance using large active area photodiodes with Automatic Gain Control Circuit(AGC)using software and hardware.The performance of the proposed intelligent MRI-VLC system is analyzed by calculating Bit Error Rate at an inclined distance of 50 cm away from line of sight of the LED.The Experimental results showed that the maximum distance achieved was 400 cm at Bit Error Rate(BER)of 1.5×10^(-5).
基金supported by the National Basic Research Program of China (973 Program, 2007CB613302)the Natural Science Foundation of Hubei Province (2016CFA078)~~
文摘We demonstrate the synthesis of C-Cl-codoped titania/attapulgite(TiO2/ATT) composites containing a mixture of TiO2 phases by a facile sol-gel method at 70 ℃ using titanium tetraisopropoxide as the TiO2 precursor and ATT as a support for the TiO2 nanoparticles.The photocatalytic activity of the C-Cl-codoped TiO2/ATT composites with mixed anatase/brookite/rutile phases obtained at pH= 3.0 was much higher than that of commercially available Degussa P25 for the photocatalytic degradation of acid red G under visible-light irradiation.The excellent photocatalytic activity of the developed composite originates from the nonmetal codoping,which extends the absorption edge of TiO2 into visible region,and the presence of multiple phases,which slow the recombination of photoexcited electron/hole pairs.The formation of hydroxyl radicals during the photocatalytic degradation process was detected by photoluminescence probing using terephthalic acid.A mechanism for photocatalysis over the C-Cl-codoped TiO2/ATT composites was proposed.
基金Projects (50908096, 50908097) supported by the National Natural Science Foundation of ChinaProject (20100471251) supported by China Postdoctoral Science Foundation
文摘In order to develop the high photocatalytic activity of TiO2 under visible light as that under ultraviolet light and make it easy to be separated from treated liquor, a visible light response and spherical activated carbon (SAC) supported photocatalyst doped with upconversion luminescence agent Er3+:YAlO3 was prepared by immobilizing Er3+:YAlO3/TiO2, which was obtained by combination of Er3+:YAlO3 and TiO2 using sol-gel method, on the surface of SAC. The crystal phase composition, surface structure and element distribution, and light absorption of the new photocatalysts were examined by X-ray diffraction (XRD), energy dispersive X-ray spectra (EDS) analysis, scanning electron microscopy (SEM) and fluorescence spectra analysis (FSA). The photocatalytic oxidation activity of the photocatalysts was also evaluated by the photodegradation of methyl orange (MO) in aqueous solution under visible light irradiation from a LED lamp (λ400 nm). The results showed that Er3+:YAlO3 could perform as the upconversion luminescence agent which converts the visible light up to ultraviolet light. The Er3+:YAlO3/TiO2 calcinated at 700 °C revealed the highest photocatalytic activity. The apparent reaction rate constant could reach 0.0197 min-1 under visible light irradiation.
基金supported by the National Natural Science Foundation of China(2100705351302241)+1 种基金the Education Department of Henan Province(2012GGJS-174)Xuchang University Science Research Foundation(2015011)~~
文摘Formation of a p–n heterojunction rather than p-type or n-type semiconductors can enhance the separation of photogenerated electrons and holes and increase the quantum efficiency of photocatalytic reactions owing to the difference of the electric potential in the inner electric field near the junction,pointing from n toward p. n-Ag3PO4/p-Ag2CO3 p–n heterojunction composites are prepared through a facile coprecipitation process. The obtained Ag3PO4/Ag2CO3 p–n heterojunctions exhibit excellent photocatalytic performance in the removal of rhodamine B(RhB) compared with Ag3PO4 and Ag2CO3. The 40%-Ag3PO4/Ag2CO3 composite photocatalyst(40 mol% Ag3PO4 and 60 mol% Ag2CO3) exhibits the best photocatalytic activity under visible light,demonstrating the ability to completely degrade RhB within 15 min. Transient photovoltage characterization and an active species trapping experiment further indicate that the formation of a p–n heterojunction structure can greatly enhance the separation efficiency of photogenerated carriers and produce more free h+active species,which is the predominant contributor for RhB removal.
基金supported by the National Key Research and Development Project (2016YFC0204702)the National Natural Science Foundation of China (51478070, 21501016, 51108487)+2 种基金the Innovative Research Team of Chongqing (CXTDG201602014)the Natural Science Foundation of Chongqing (cstc2016jcyjA0481)Youth Innovation Promotion Association of Chinese Academy of Sciences (2015316)~~
文摘Heterostructured BiOI@La(OH)3 nanorod photocatalysts were prepared by a facile chemical impregnation method.The enhanced visible light absorption and charge carrier separation can be simultaneously realized after the introduction of BiOI particles into La(OH)3 nanorods.The BiOI@La(OH)3 composites were applied for visible light photocatalytic oxidization of NO in air and exhibited an enhanced activity compared with BiOI and pure La(OH)3 nanorods.The results show that the energy levels between the La(OH)3 and BiOI phases matched well with each other,thus forming a heterojunctioned BiOI@La(OH)3 structure.This band structure matching could promote the separation and transfer of photoinduced electron-hole pairs at the interface,resulting in enhanced photocatalytic performance under visible light irradiation.The photocatalytic performance of BiOI@La(OH)3 is shown to be dependent on the mass ratio of BiOI to La(OH)3.The highest photocatalytic performance can be achieved when the mass ratio of BiOI to La(OH)3 is controlled at 1.5.A further increase of the mass ratio of BiOI weakened the redox abilities of the photogenerated charge carriers.A new photocatalytic mechanism for BiOI@La(OH)3 heterostructures is proposed,which is directly related to the efficient separation of photogenerated charge carriers by the heterojunction.Importantly,the as-prepared BiOI@La(OH)3 heterostructures exhibited a high photochemical stability after multiple reaction runs.Our findings demonstrate that BiOI is an effective component for the formation of a heterostructure with the properties of a wide bandgap semiconductor,which is of great importance for extending the light absorption and photocatalytic activity of wide bandgap semiconductors into visible light region.
基金supported by Teamwork Project Funded by Guangdong Natural Science Foundation(S2013030012842)~~
文摘particle size (5.0 nm), large specific surface area (213.45 m1 2/g), and efficient response to broadband light over the entire ultraviolet-visible spectrum with a narrow band gap of 1.84 eV. In addition, TiO2 -180℃ exhibited the optimal reaction rate constant for the degradation of methylene blue (0.08287 mg/(Lmin)), which is six times higher than that of the mixed rutile/anatase phase TiO2 photocatalytic standard P25 (0.01342 mg/(L min)). Furthermore, cycling photodegradation ex-periments confirmed the stability and reusability of this catalyst. The unique physicochemical properties resulting from the low-temperature preparation of TiO2 -180℃, including its broadband visible absorption associated with a high concentration of oxygen vacancies, large surface area, and enriched surface -OH/H2O may be responsible for this excellent photocatalytic performance. The use of as-prepared TiO2 -180℃ for practical applications is expected after further optimization.
基金supported by the China Postdoctoral Science Foundation Funded Project (2016M592642)Project from Chongqing Education Commission (KJ1600305)+3 种基金Chongqing Basic Science and Advanced Technology Research (cstc2016jcyjAX0003)the Start-up Foundation for Doctors of Chongqing Normal University (15XLB010, 15XLB014)the National Natural Science Foundation of China (51478070, 51108487)the Innovative Research Team of Chongqing (CXTDG201602014)~~
文摘Graphitic carbon nitride(g-C3N4) with efficient photocatalytic activity was synthesized through thermal polymerization of thiourea with the addition of water(CN-W) or ethanol(CN-E) at 550 ℃for 2 h.The physicochemical properties of the g-C3N4 were investigated by X-ray diffraction,transmission electron microscopy,ultraviolet-visible spectroscopy,photoluminescence spectroscopy,diffuse-reflection spectroscopy,BET and BJH surface area characterization,and elemental analysis.The carbon content was found to have self-doped into the g-C3N4 matrix during the thermal polymerization of thiourea and ethanol.CN-W and CN-E showed considerably enhanced visible-light photocatalytic activity,with NO removal percentages of 37.2%and 48.3%,respectively.Compared with pure g-C3N4,both the short and long lifetimes of the charge carriers in CN-W and CN-E were found to be prolonged.The mechanism of improved visible-light photocatalytic activity was deduced.The present work may provide a facile route to optimize the microstructure of g-C3N4photocatalysts for high-performance environmental and energy applications.
基金supported by the National Natural Science Foundation of China (U1232119, 21403172)the Sichuan Youth Science and Technology Foundation (2013JQ0034, 2014JQ0017)the Innovative Research Team of Sichuan Province (2016TD0011)~~
文摘Photocatalysis is regarded as an ideal technology for solving the urgent environmental and energy issues that we face today.Among the reported photocatalysts,molybdenum disulfide(MoS2) is very promising for applications in hydrogen production and pollutant photodegradation.However,its lack of active sites and the difficulty of recovering catalysts in powder form have hindered its wide application.Here,we report the successful preparation of a macroscopic visible-light responsive MoS2/reduced graphene oxide(MoS2/RGO) aerogel.The obtained MoS2/RGO aerogel exhibits enhanced photocatalytic activity towards hydrogen production and photoreduction of Cr(Ⅵ) in comparison with the MoS2 powder.In addition,the low density(56.1 mg/cm^3) of the MoS2/RGO aerogel enables it to be used as an efficient adsorption material for organic pollutants.Our results demonstrate that this very promising multifunctional aerogel has potential applications in environmental remediation and clean energy production.
基金supported by the National Natural Science Foundation of China (21173088)the Science and Technology Project of Guangdong Province (2014A030312007, 2015A050502012, 2016A010104013)+1 种基金the China Postdoctoral Science Foundation (2016M592493)the Open Research Fund of Hunan Key Laboratory of Applied Environmental Photocatalysis (CCSU-XT-06),Changsha University~~
文摘An immobilized Cu2O/g-C3N4 heterojunction film was successfully made on an FTO substrate by electrophoretic deposition of g-C3N4 on a Cu2O thin film.The photoelectrochemical(PEC) performance for water splitting by the Cu2O/g-C3N4 film was better than pure g-C3N4 and pure Cu2O film.Under-0.4 V external bias and visible light irradiation,the photocurrent density and PEC hydrogen evolution efficiency of the optimized Cu2O/g-C3N4 film was-1.38 mA/cm^2 and 0.48 mL h^-1 cm^-2,respectively.The enhanced PEC performance of Cu2O/g-C3N4 was attributed to the synergistic effect of light coupling and a matching energy band structure between g-C3N4 and Cu2O as well as the external bias.
文摘High power and high-slope efficiency 650nm band real-refractive-index ridge w aveguide AlGaInP laser diodes with compressive strained MQW active layer are for med by pure Ar ion beam etching process.Symmetric laser mesas with high perpendi cularity,which are impossible to obtain by traditional wet etching method due to the use of a 15°-misoriented substrate,are obtained by this dry etching metho d.Laser diodes with 4μm wide,600μm long and 10%/90% coat are fabricated.Th e typical threshold current of these devices is 46mA at room temperature,and a s table fundamental-mode operation over 40mW is obtained.Very high slope efficien cy of 1.4W/A at 10mW and 1.1W/A at 40mW are realized.