This study analyzed the impact of land-based contaminants and tertiary industrial structure on economic development in the selected Bohai Bay area,China.Based on panel data spanning 2011-2020,a vector autoregressive(V...This study analyzed the impact of land-based contaminants and tertiary industrial structure on economic development in the selected Bohai Bay area,China.Based on panel data spanning 2011-2020,a vector autoregressive(VAR)model is used to analyze and forecast the short-run and long-run relationships between three industrial structures,pollutant discharge,and economic development.The results showed that the environmental index had a long-term cointegration relationship with the industrial structure economic index.Per capital chemical oxygen demand(PCOD)and per capita ammonia nitrogen(PNH_(3)N)had a positive impact on delta per capita GDP(dPGDP),while per capita solid waste(PSW),the secondary industry rate(SIR)and delta tertiary industry(dTIR)had a negative impact on dPGDP.The VAR model under this coupling system had stability and credibility.The impulse response results showed that the short-term effect of the coupling system on dPGDP was basically consistent with the Granger causality test results.In addition,variance decomposition was used in this study to predict the long-term impact of the coupling system in the next ten periods(i.e.,ten years).It was found that dTIR had a great impact on dPGDP,with a contribution rate as high as 74.35%in the tenth period,followed by the contribution rate of PCOD up to 3.94%,while the long-term contribution rates of PSW,SIR and PNH3N were all less than 1%.The results show that the government should support the development of the tertiary industry to maintain the vitality of economic development and prevent environmental deterioration.展开更多
Integrated multi-trophic aquaculture(IMTA)has been considered as an ecofriendly culture system providing a potential solution to environmental risks caused by intensive monoculture system.However,the impact of IMTA on...Integrated multi-trophic aquaculture(IMTA)has been considered as an ecofriendly culture system providing a potential solution to environmental risks caused by intensive monoculture system.However,the impact of IMTA on phytoplankton remains unclear.In this study,the spatial and temporal variations of phytoplankton in Sanggou Bay were investigated seasonally based on 21 sampling sites covering three cultivation zones(bivalve zone,IMTA zone,and kelp zone)and one control zone(without aquatic cultivation).In total,128 phytoplankton species,with diatoms and dinoflagellates as the dominant groups,were obtained across the whole year,and the mean Shannon diversity index(H')and species richness(SR)were determined as 1.39 and 9.39,respectively.The maximum chlorophyll a(Chl-a)(6.32μg L^(-1))and plankton diversity(H'of 1.97)occurred in summer and autumn,respectively.Compared to other zones,the bivalve zone displayed significantly higher Chl-a and lower H'in majority of time.Pairwise PERMANOVA analysis indicated that the phytoplankton assemblage in the bivalve zone was significantly different with the control and kelp zones,while the IMTA zone maintained close to other three zones.Based on generalized additive models,temperature,NO_(2)^(-)-N,N/P ratio,SiO_(3)^(2-)-Si,and salinity were determined as the key factors underlying Chl-a and phytoplankton diversity.Addi-tionally,the results of redundancy analysis further indicated that the phytoplankton assemblage in the bivalve zone is positively re-lated with nutrients such as NO_(3)^(-)-N and NH_(4)^(+)-N as well as water depth,while the phytoplankton assemblages in the kelp,control,and IMTA zones are associated with NO_(2)^(-)-N,SiO_(3)^(2-)-Si,and salinity.Taken all observations into consideration together,it can be inferred that IMTA can effectively reduce Chl-a level compared to bivalve monoculture by reducing the nutrients.However,the SR,H’,and species composition of phytoplankton are primarily determined by local environment factors such as temperature,water depth,salinity and SiO_(3)^(2-)-Si.展开更多
To better understand the community patterns mediated by connectivity in artificial reefs of coastal areas, it is necessary to understand the distribution and coexistence of organisms with artificial reefs area and adj...To better understand the community patterns mediated by connectivity in artificial reefs of coastal areas, it is necessary to understand the distribution and coexistence of organisms with artificial reefs area and adjacent waters. This study was conducted to examine main catches assemblages collected by trawls in Haizhou Bay,which included five habitats: the artificial reef area(AR), aquaculture area(AA), natural area(NA), estuary area(EA) and comprehensive effect area(CEA). The result shows that the total abundances of species in the five habitats were highly different(univariate PERMANOVA: P = 0.001, n = 24), but some species were also unique in their habitat(e.g. Scapharca subcrenata and Glossaulax didyma in AA). The body size distribution of specific species between habitats are different. For Collichthys lucidus, their body size in AR(14.63 cm ± 1.64 cm) and EA(14.3 cm ± 0.85 cm) is higher than that in NA(10.65 cm ± 1.64 cm), CEA(11.28 cm ± 1.85 cm) and AA(12.1 cm ±0.43 cm), which indicates the potential connection from AR to EA mediated by their adult population. We concluded that artificial reefs in AR can be considered key components that have the ability to support species assemblages in adjacent habitats. This study has implications for the conservation and monitoring of species assemblages in coastal areas in terms of that artificial reefs can be applied in different stages of habitat protection implementation and in different combinations of scenarios.展开更多
基金supported by the research funds for Coupling Research on Industrial Upgrade and Environmental Management in the Bohai Rim-Technique,methodology,and Environmental Economic Policies(No.42076221).
文摘This study analyzed the impact of land-based contaminants and tertiary industrial structure on economic development in the selected Bohai Bay area,China.Based on panel data spanning 2011-2020,a vector autoregressive(VAR)model is used to analyze and forecast the short-run and long-run relationships between three industrial structures,pollutant discharge,and economic development.The results showed that the environmental index had a long-term cointegration relationship with the industrial structure economic index.Per capital chemical oxygen demand(PCOD)and per capita ammonia nitrogen(PNH_(3)N)had a positive impact on delta per capita GDP(dPGDP),while per capita solid waste(PSW),the secondary industry rate(SIR)and delta tertiary industry(dTIR)had a negative impact on dPGDP.The VAR model under this coupling system had stability and credibility.The impulse response results showed that the short-term effect of the coupling system on dPGDP was basically consistent with the Granger causality test results.In addition,variance decomposition was used in this study to predict the long-term impact of the coupling system in the next ten periods(i.e.,ten years).It was found that dTIR had a great impact on dPGDP,with a contribution rate as high as 74.35%in the tenth period,followed by the contribution rate of PCOD up to 3.94%,while the long-term contribution rates of PSW,SIR and PNH3N were all less than 1%.The results show that the government should support the development of the tertiary industry to maintain the vitality of economic development and prevent environmental deterioration.
基金supported by the National Science and Technology Basic Resources Investigation Program of China(No.2018FY100206)the National Natural Science Foundation of China(Nos.31902370 and 42276099)+2 种基金the Ningbo Public Welfare Science and Technology Program(No.2022S161)the Key Program of Science and Technology Innovation in Ningbo(No.2023Z118)the National Key Research and Development Program of China(No.2018YFD0900703).
文摘Integrated multi-trophic aquaculture(IMTA)has been considered as an ecofriendly culture system providing a potential solution to environmental risks caused by intensive monoculture system.However,the impact of IMTA on phytoplankton remains unclear.In this study,the spatial and temporal variations of phytoplankton in Sanggou Bay were investigated seasonally based on 21 sampling sites covering three cultivation zones(bivalve zone,IMTA zone,and kelp zone)and one control zone(without aquatic cultivation).In total,128 phytoplankton species,with diatoms and dinoflagellates as the dominant groups,were obtained across the whole year,and the mean Shannon diversity index(H')and species richness(SR)were determined as 1.39 and 9.39,respectively.The maximum chlorophyll a(Chl-a)(6.32μg L^(-1))and plankton diversity(H'of 1.97)occurred in summer and autumn,respectively.Compared to other zones,the bivalve zone displayed significantly higher Chl-a and lower H'in majority of time.Pairwise PERMANOVA analysis indicated that the phytoplankton assemblage in the bivalve zone was significantly different with the control and kelp zones,while the IMTA zone maintained close to other three zones.Based on generalized additive models,temperature,NO_(2)^(-)-N,N/P ratio,SiO_(3)^(2-)-Si,and salinity were determined as the key factors underlying Chl-a and phytoplankton diversity.Addi-tionally,the results of redundancy analysis further indicated that the phytoplankton assemblage in the bivalve zone is positively re-lated with nutrients such as NO_(3)^(-)-N and NH_(4)^(+)-N as well as water depth,while the phytoplankton assemblages in the kelp,control,and IMTA zones are associated with NO_(2)^(-)-N,SiO_(3)^(2-)-Si,and salinity.Taken all observations into consideration together,it can be inferred that IMTA can effectively reduce Chl-a level compared to bivalve monoculture by reducing the nutrients.However,the SR,H’,and species composition of phytoplankton are primarily determined by local environment factors such as temperature,water depth,salinity and SiO_(3)^(2-)-Si.
基金The China Scholarship Council under contract No.202308310175the China Postdoctoral Science Foundation under contract No.E-6005-00-0042-39+6 种基金Postdoctoral Fellowship Program of CPSF under contract No. GZC20231539the Jiangsu Haizhou Bay National Sea Ranching Demonstration Project under contract No. D–8005–18–0188Shanghai Municipal Science and Technology Commission Local Capacity Construction Project under contract No. 21010502200the Science Foundation for Youths of Jiangsu ProvinceChina under contract No. BK20170438the Science and Technology Projects in Nantong under contract No. JC2018014the Social Livelihood Key Projects of Nantong under contract No. MS22021015。
文摘To better understand the community patterns mediated by connectivity in artificial reefs of coastal areas, it is necessary to understand the distribution and coexistence of organisms with artificial reefs area and adjacent waters. This study was conducted to examine main catches assemblages collected by trawls in Haizhou Bay,which included five habitats: the artificial reef area(AR), aquaculture area(AA), natural area(NA), estuary area(EA) and comprehensive effect area(CEA). The result shows that the total abundances of species in the five habitats were highly different(univariate PERMANOVA: P = 0.001, n = 24), but some species were also unique in their habitat(e.g. Scapharca subcrenata and Glossaulax didyma in AA). The body size distribution of specific species between habitats are different. For Collichthys lucidus, their body size in AR(14.63 cm ± 1.64 cm) and EA(14.3 cm ± 0.85 cm) is higher than that in NA(10.65 cm ± 1.64 cm), CEA(11.28 cm ± 1.85 cm) and AA(12.1 cm ±0.43 cm), which indicates the potential connection from AR to EA mediated by their adult population. We concluded that artificial reefs in AR can be considered key components that have the ability to support species assemblages in adjacent habitats. This study has implications for the conservation and monitoring of species assemblages in coastal areas in terms of that artificial reefs can be applied in different stages of habitat protection implementation and in different combinations of scenarios.