Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's dis...Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's disease-related dementia.Our previous study identified the upregulation of microRNA-502-3p(miR-502-3p)and downregulation of GABA type A receptor subunitα-1 in Alzheimer's disease synapses.This study investigated a new molecular relationship between miR-502-3p and GABAergic synapse function.In vitro studies were perfo rmed using the mouse hippocampal neuronal cell line HT22 and miR-502-3p agomiRs and antagomiRs.In silico analysis identified multiple binding sites of miR-502-3p at GABA type A receptor subunitα-1 mRNA.Luciferase assay confirmed that miR-502-3p targets the GABA type A receptor subunitα-1 gene and suppresses the luciferase activity.Furthermore,quantitative reve rse transcription-polymerase chain reaction,miRNA in situ hybridization,immunoblotting,and immunostaining analysis confirmed that overexpression of miR-502-3p reduced the GABA type A receptor subunitα-1 level,while suppression of miR-502-3p increased the level of GABA type A receptor subunitα-1 protein.Notably,as a result of the overexpression of miR-502-3p,cell viability was found to be reduced,and the population of necrotic cells was found to be increased.The whole cell patch-clamp analysis of human-GABA receptor A-α1/β3/γ2L human embryonic kidney(HEK)recombinant cell line also showed that overexpression of miR-502-3p reduced the GABA current and overall GABA function,suggesting a negative correlation between miR-502-3p levels and GABAergic synapse function.Additionally,the levels of proteins associated with Alzheimer s disease were high with miR-502-3p overexpression and reduced with miR-502-3p suppression.The present study provides insight into the molecular mechanism of regulation of GABAergic synapses by miR-502-3p.We propose that micro-RNA,in particular miR-502-3p,could be a potential therapeutic to rget to modulate GABAergic synapse function in neurological disorders,including Alzheimer's disease and Alzheimer's diseaserelated dementia.展开更多
Objective:CAR-T/NK cells have had limited success in the treatment of solid tumors,such as colorectal cancer(CRC),in part because of the heterogeneous nature of tumor-associated antigens that lead to antigen-negative ...Objective:CAR-T/NK cells have had limited success in the treatment of solid tumors,such as colorectal cancer(CRC),in part because of the heterogeneous nature of tumor-associated antigens that lead to antigen-negative relapse after the initial response.This barrier might be overcome by enhancing the recruitment and durability of endogenous immune cells.Methods:Immunohistochemistry and flow cytometry were used to assess the expression of CD133 antigen in tissue microarrays and cell lines,respectively.Retroviral vector transduction was used to generate CBLB502-secreting CAR133-NK92 cells(CAR133-i502-NK92).The tumor killing capacity of CAR133-NK92 cells in vitro and in vivo were quantified via LDH release,the RTCA assay,and the degranulation test,as well as measuring tumor bioluminescence signal intensity in mice xenografts.Results:We engineered CAR133-i502-NK92 cells and demonstrated that those cells displayed enhanced proliferation(9.0×10^(4)cells vs.7.0×10^(4)cells)and specific anti-tumor activities in vitro and in a xenogeneic mouse model,and were well-tolerated.Notably,CBLB502 secreted by CAR133-i502-NK92 cells effectively activated endogenous immune cells.Furthermore,in hCD133+/hCD133−mixed cancer xenograft models,CAR133-i502-NK92 cells suppressed cancer growth better than the counterparts(n=5,P=0.0297).Greater T-cell infiltration was associated with greater anti-tumor potency(P<0.0001).Conclusions:Armed with a CBLB502 TLR5 agonist,CAR133-NK92 cells were shown to be capable of specifically eliminating CD133-positive colon cancer cells in a CAR133-dependent manner and indirectly eradicating CD133-negative colon cancer cells in a CBLB502-specific endogenous immune response manner.This study describes a novel technique for optimizing CAR-T/NK cells for the treatment of antigenically-diverse solid tumors.展开更多
基金supported by the National Institute on Aging (NIA)National Institutes of Health (NIH)+3 种基金Nos.K99AG065645,R00AG065645R00AG065645-04S1 (to SK)NIH research grants,NINDS,No.R01 NS115834NINDS/NIA,No.R01 NS115834-02S1 (to LG)。
文摘Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's disease-related dementia.Our previous study identified the upregulation of microRNA-502-3p(miR-502-3p)and downregulation of GABA type A receptor subunitα-1 in Alzheimer's disease synapses.This study investigated a new molecular relationship between miR-502-3p and GABAergic synapse function.In vitro studies were perfo rmed using the mouse hippocampal neuronal cell line HT22 and miR-502-3p agomiRs and antagomiRs.In silico analysis identified multiple binding sites of miR-502-3p at GABA type A receptor subunitα-1 mRNA.Luciferase assay confirmed that miR-502-3p targets the GABA type A receptor subunitα-1 gene and suppresses the luciferase activity.Furthermore,quantitative reve rse transcription-polymerase chain reaction,miRNA in situ hybridization,immunoblotting,and immunostaining analysis confirmed that overexpression of miR-502-3p reduced the GABA type A receptor subunitα-1 level,while suppression of miR-502-3p increased the level of GABA type A receptor subunitα-1 protein.Notably,as a result of the overexpression of miR-502-3p,cell viability was found to be reduced,and the population of necrotic cells was found to be increased.The whole cell patch-clamp analysis of human-GABA receptor A-α1/β3/γ2L human embryonic kidney(HEK)recombinant cell line also showed that overexpression of miR-502-3p reduced the GABA current and overall GABA function,suggesting a negative correlation between miR-502-3p levels and GABAergic synapse function.Additionally,the levels of proteins associated with Alzheimer s disease were high with miR-502-3p overexpression and reduced with miR-502-3p suppression.The present study provides insight into the molecular mechanism of regulation of GABAergic synapses by miR-502-3p.We propose that micro-RNA,in particular miR-502-3p,could be a potential therapeutic to rget to modulate GABAergic synapse function in neurological disorders,including Alzheimer's disease and Alzheimer's diseaserelated dementia.
基金supported by the Technology Innovation and Application Developnent Key Program of Chongqing(Grant No.CSTC2021jscx-gksb-N0026)the National Natural Science Foundation of China(Grant No.31540016)+1 种基金the Basic Research and Frontier Exploration Projects of Chongqing(Grant No.cstc2018jcyjAX0075)the Subsidy Fund for the Development of National Silk in Chongqing(Grant No.CQ2018JSCE05).
文摘Objective:CAR-T/NK cells have had limited success in the treatment of solid tumors,such as colorectal cancer(CRC),in part because of the heterogeneous nature of tumor-associated antigens that lead to antigen-negative relapse after the initial response.This barrier might be overcome by enhancing the recruitment and durability of endogenous immune cells.Methods:Immunohistochemistry and flow cytometry were used to assess the expression of CD133 antigen in tissue microarrays and cell lines,respectively.Retroviral vector transduction was used to generate CBLB502-secreting CAR133-NK92 cells(CAR133-i502-NK92).The tumor killing capacity of CAR133-NK92 cells in vitro and in vivo were quantified via LDH release,the RTCA assay,and the degranulation test,as well as measuring tumor bioluminescence signal intensity in mice xenografts.Results:We engineered CAR133-i502-NK92 cells and demonstrated that those cells displayed enhanced proliferation(9.0×10^(4)cells vs.7.0×10^(4)cells)and specific anti-tumor activities in vitro and in a xenogeneic mouse model,and were well-tolerated.Notably,CBLB502 secreted by CAR133-i502-NK92 cells effectively activated endogenous immune cells.Furthermore,in hCD133+/hCD133−mixed cancer xenograft models,CAR133-i502-NK92 cells suppressed cancer growth better than the counterparts(n=5,P=0.0297).Greater T-cell infiltration was associated with greater anti-tumor potency(P<0.0001).Conclusions:Armed with a CBLB502 TLR5 agonist,CAR133-NK92 cells were shown to be capable of specifically eliminating CD133-positive colon cancer cells in a CAR133-dependent manner and indirectly eradicating CD133-negative colon cancer cells in a CBLB502-specific endogenous immune response manner.This study describes a novel technique for optimizing CAR-T/NK cells for the treatment of antigenically-diverse solid tumors.