Objective:To analyze the existing risks in breast milk management at the neonatal department and provide corresponding countermeasures.Methods:22 risk events were identified in 7 risk links in the process of bottle-fe...Objective:To analyze the existing risks in breast milk management at the neonatal department and provide corresponding countermeasures.Methods:22 risk events were identified in 7 risk links in the process of bottle-feeding of breast milk.Hazard Vulnerability Analysis based on the Kaiser model was applied to investigate and evaluate the risk events.Results:High-risk events include breast milk quality inspection,hand hygiene during collection,disinfection of collectors,cold chain management,hand hygiene during the reception,breast milk closed-loop management,and post-collection disposal.Root cause analysis of high-risk events was conducted and breast milk management strategies outside the hospital and within the neonatal department were proposed.Conclusion:Hazard Vulnerability Analysis based on the Kaiser model can identify and assess neonatal breast milk management risks effectively,which helps improve the management of neonatal breast milk.It is conducive to the safe development and promotion of bottle feeding of breast milk for neonates,ensuring the quality of medical services and the safety of children.展开更多
AIM:To assess glaucoma patient satisfaction and follow-up adherence in case management and identify associated predictors to improve healthcare quality and patient outcomes.METHODS:In this cross-sectional study,a tota...AIM:To assess glaucoma patient satisfaction and follow-up adherence in case management and identify associated predictors to improve healthcare quality and patient outcomes.METHODS:In this cross-sectional study,a total of 119 patients completed a Patient Satisfaction Questionnaire-18 and a sociodemographic questionnaire.Clinical data was obtained from the case management system.Follow-up adherence was defined as completing each follow-up within±30d of the scheduled time set by ophthalmologists during the study period.RESULTS:Average satisfaction scored 78.65±7,with an average of 4.39±0.58 across the seven dimensions.Age negatively correlated with satisfaction(P=0.008),whilst patients with follow-up duration of 2 or more years reported higher satisfaction(P=0.045).Multivariate logistics regression analysis revealed that longer follow-up durations were associated with lower follow-up adherence(OR=0.97,95%CI,0.95-1.00,P=0.044).Additionally,patients with suspected glaucoma(OR=2.72,95%CI,1.03-7.20,P=0.044)and those with an annual income over 100000 Chinese yuan demonstrated higher adherence(OR=5.57,95%CI,1.00-30.89,P=0.049).CONCLUSION:The case management model proves effective for glaucoma patients,with positive adherence rates.The implementation of this model can be optimized in the future based on the identified factors and extended to glaucoma patients in more hospitals.展开更多
Hepatitis B virus(HBV)reactivation is a clinically significant challenge in disease management.This review explores the immunological mechanisms underlying HBV reactivation,emphasizing disease progression and manageme...Hepatitis B virus(HBV)reactivation is a clinically significant challenge in disease management.This review explores the immunological mechanisms underlying HBV reactivation,emphasizing disease progression and management.It delves into host immune responses and reactivation’s delicate balance,spanning innate and adaptive immunity.Viral factors’disruption of this balance,as are interac-tions between viral antigens,immune cells,cytokine networks,and immune checkpoint pathways,are examined.Notably,the roles of T cells,natural killer cells,and antigen-presenting cells are discussed,highlighting their influence on disease progression.HBV reactivation’s impact on disease severity,hepatic flares,liver fibrosis progression,and hepatocellular carcinoma is detailed.Management strategies,including anti-viral and immunomodulatory approaches,are critically analyzed.The role of prophylactic anti-viral therapy during immunosuppressive treatments is explored alongside novel immunotherapeutic interventions to restore immune control and prevent reactivation.In conclusion,this compre-hensive review furnishes a holistic view of the immunological mechanisms that propel HBV reactivation.With a dedicated focus on understanding its implic-ations for disease progression and the prospects of efficient management stra-tegies,this article contributes significantly to the knowledge base.The more profound insights into the intricate interactions between viral elements and the immune system will inform evidence-based approaches,ultimately enhancing disease management and elevating patient outcomes.The dynamic landscape of management strategies is critically scrutinized,spanning anti-viral and immunomodulatory approaches.The role of prophylactic anti-viral therapy in preventing reactivation during immunosuppressive treatments and the potential of innovative immunotherapeutic interventions to restore immune control and proactively deter reactivation.展开更多
Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase chan...Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well.展开更多
BACKGROUND Regarding the incidence of malignant tumors in China,the incidence of liver cancer ranks fourth,second only to lung,gastric,and esophageal cancers.The case fatality rate ranks third after lung and cervical ...BACKGROUND Regarding the incidence of malignant tumors in China,the incidence of liver cancer ranks fourth,second only to lung,gastric,and esophageal cancers.The case fatality rate ranks third after lung and cervical cancer.In a previous study,the whole-process management model was applied to patients with breast cancer,which effectively reduced their negative emotions and improved treatment adherence and nursing satisfaction.METHODS In this single-center,randomized,controlled study,60 randomly selected patients with liver cancer who had been admitted to our hospital from January 2021 to January 2022 were randomly divided into an observation group(n=30),who received whole-process case management on the basis of routine nursing mea-sures,and a control group(n=30),who were given routine nursing measures.We compared differences between the two groups in terms of anxiety,depression,the level of hope,self-care ability,symptom distress,sleep quality,and quality of life.RESULTS Post-intervention,Hamilton anxiety scale,Hamilton depression scale,memory symptom assessment scale,and Pittsburgh sleep quality index scores in both groups were lower than those pre-intervention,and the observation group had lower scores than the control group(P<0.05).Herth hope index,self-care ability assessment scale-revision in Chinese,and quality of life measurement scale for patients with liver cancer scores in both groups were higher than those pre-intervention,with higher scores in the observation group compared with the control group(P<0.05).CONCLUSION Whole-process case management can effectively reduce anxiety and depression in patients with liver cancer,alleviate symptoms and problems,and improve the level of hope,self-care ability,sleep quality,and quality of life,as well as provide feasible nursing alternatives for patients with liver cancer.展开更多
BACKGROUND Colorectal signet-ring cell carcinoma(CSRCC)is a rare clinical entity which accounts for approximately 1%of all colorectal cancers.Although multiple studies concerning this specific topic have been publishe...BACKGROUND Colorectal signet-ring cell carcinoma(CSRCC)is a rare clinical entity which accounts for approximately 1%of all colorectal cancers.Although multiple studies concerning this specific topic have been published in the past decades,the pathogenesis,associated risk factors,and potential implications on treatment are still poorly understood.Besides the low incidence,historically confusing histological criteria have resulted in confusing data.Nevertheless,the rising incidence of CSRCC along with relatively young age at presentation and associated dismal prognosis,highlight the actual interest to synthesize the known literature regarding CSRCC.AIM To provide an updated overview of risk factors,prognosis,and management of CSRCC.METHODS A literature search in the MEDLINE/PubMed database was conducted with the following search terms used:‘Signet ring cell carcinoma’and‘colorectal’.Studies in English language,published after January 1980,were included.Studies included in the qualitative synthesis were evaluated for content concerning epidemiology,risk factors,and clinical,diagnostic,histological,and molecular features,as well as metastatic pattern and therapeutic management.If possible,presented data was extracted in order to present a more detailed overview of the literature.RESULTS In total,67 articles were included for qualitative analysis,of which 54 were eligible for detailed data extraction.CSRCC has a reported incidence between 0.1%-2.4%and frequently presents with advanced disease stage at the time of diagnosis.CSRCC is associated with an impaired overall survival(5-year OS:0%-46%)and a worse stagecorrected outcome compared to mucinous and not otherwise specified adenocarcinoma.The systematic use of exploratory laparoscopy to determine the presence of peritoneal metastases has been advised.Surgery is the mainstay of treatment,although the rates of curative resection in CSRCC(21%-82%)are lower compared to those in other histological types.In case of peritoneal metastasis,cytoreductive surgery with hyperthermic intraperitoneal chemotherapy should only be proposed in selected patients.CONCLUSION CSRCC is a rare clinical entity most often characterized by young age and advanced disease at presentation.As such,diagnostic modalities and therapeutic approach should be tailored accordingly.展开更多
The detection of software vulnerabilities written in C and C++languages takes a lot of attention and interest today.This paper proposes a new framework called DrCSE to improve software vulnerability detection.It uses ...The detection of software vulnerabilities written in C and C++languages takes a lot of attention and interest today.This paper proposes a new framework called DrCSE to improve software vulnerability detection.It uses an intelligent computation technique based on the combination of two methods:Rebalancing data and representation learning to analyze and evaluate the code property graph(CPG)of the source code for detecting abnormal behavior of software vulnerabilities.To do that,DrCSE performs a combination of 3 main processing techniques:(i)building the source code feature profiles,(ii)rebalancing data,and(iii)contrastive learning.In which,the method(i)extracts the source code’s features based on the vertices and edges of the CPG.The method of rebalancing data has the function of supporting the training process by balancing the experimental dataset.Finally,contrastive learning techniques learn the important features of the source code by finding and pulling similar ones together while pushing the outliers away.The experiment part of this paper demonstrates the superiority of the DrCSE Framework for detecting source code security vulnerabilities using the Verum dataset.As a result,the method proposed in the article has brought a pretty good performance in all metrics,especially the Precision and Recall scores of 39.35%and 69.07%,respectively,proving the efficiency of the DrCSE Framework.It performs better than other approaches,with a 5%boost in Precision and a 5%boost in Recall.Overall,this is considered the best research result for the software vulnerability detection problem using the Verum dataset according to our survey to date.展开更多
Jeneberang watershed is vital,particularly for people living in Gowa Regency(South Sulawesi Province,Indonesia),who benefit from its many advantages.Landslides and floods occur every year in the Jeneberang watershed,s...Jeneberang watershed is vital,particularly for people living in Gowa Regency(South Sulawesi Province,Indonesia),who benefit from its many advantages.Landslides and floods occur every year in the Jeneberang watershed,so it is imperative to understand the socio-economic vulnerability of this region.This research aims to identify the vulnerability level of the Jeneberang watershed so that the government can prioritize areas with high vulnerability level and formulate effective strategies to reduce these the vulnerability.Specifically,this study was conducted in 12 districts located in the Jeneberang watershed.The primary data were collected from questionnaires completed by community members,community leaders,and various stakeholders,and the secondary data were from the Landsat satellite imagery in 2020,the Badan Push Statistic of Gowa Regency,and some governmental agencies.The socio-economic vulnerability variables were determined using the Multiple Criteria Decision Analysis(MCDA)method,and each variable was weighted and analyzed using the Geographical Information System(GIS).The study reveals that the levels of socio-economic vulnerability are affected by variables such as population density,vulnerable groups(disabled people,elderly people,and young people),road network and settlement,percentage of poor people,and productive land area in the Jeneberang watershed.Moreover,all of the 12 districts in the Jeneberang watershed are included in the medium vulnerability level,with the mean percentage of socio-economic vulnerability around 50.92%.The socio-economic vulnerability of Bajeng,Pallangga,and Somba Opu districts is categorized at high level,the socio-economic vulnerability of Bungaya,Parangloe,and Tombolo Pao districts is classified as medium level,and the remaining 6 districts(Barombong,Bontolempangan,Bontomarannu,Manuju,Parigi,and Tinggimoncong)are ranked as low socio-economic vulnerability.This study can help policy-makers to formulate strategy that contributes to the protection of biodiversity and sustainable development of the Jeneberang watershed,while improving disaster resilience and preparedness of the watershed.展开更多
This research aims to propose a practical framework designed for the automatic analysis of a product’s comprehensive functionality and security vulnerabilities,generating applicable guidelines based on real-world sof...This research aims to propose a practical framework designed for the automatic analysis of a product’s comprehensive functionality and security vulnerabilities,generating applicable guidelines based on real-world software.The existing analysis of software security vulnerabilities often focuses on specific features or modules.This partial and arbitrary analysis of the security vulnerabilities makes it challenging to comprehend the overall security vulnerabilities of the software.The key novelty lies in overcoming the constraints of partial approaches.The proposed framework utilizes data from various sources to create a comprehensive functionality profile,facilitating the derivation of real-world security guidelines.Security guidelines are dynamically generated by associating functional security vulnerabilities with the latest Common Vulnerabilities and Exposure(CVE)and Common Vulnerability Scoring System(CVSS)scores,resulting in automated guidelines tailored to each product.These guidelines are not only practical but also applicable in real-world software,allowing for prioritized security responses.The proposed framework is applied to virtual private network(VPN)software,wherein a validated Level 2 data flow diagram is generated using the Spoofing,Tampering,Repudiation,Information Disclosure,Denial of Service,and Elevation of privilege(STRIDE)technique with references to various papers and examples from related software.The analysis resulted in the identification of a total of 121 vulnerabilities.The successful implementation and validation demonstrate the framework’s efficacy in generating customized guidelines for entire systems,subsystems,and selected modules.展开更多
To explore the livelihood status and key influencing factors of rural households in the minority areas,we collected flat data from 284 rural households in 32 villages across 12 counties of Western Sichuan from 2021 to...To explore the livelihood status and key influencing factors of rural households in the minority areas,we collected flat data from 284 rural households in 32 villages across 12 counties of Western Sichuan from 2021 to 2022.We conducted participatory household survey on the livelihood status of the rural households and try to identify the key factors to influence their livelihood vulnerability using multiple linear regression.The results showed that:the livelihood situation of the rural households is relatively vulnerable.The vulnerability varies significantly with the income levels,education levels,and income sources.The vulnerability of farm households,categorized from low to high livelihood types,follows the sequence:non-agricultural dominant households,non-agricultural households,agricultural dominant households,and pure agricultural households.The degree of damage to the natural environment,education costs,loan opportunities,the proportion of agricultural income to annual household income,and the presence of sick people in the household have significant positive effects on the livelihood vulnerability index(LVI)of rural households;while help from relatives and friends,net income per capita,household size,household education,agricultural land area,participation in industrial organizations,number of livestock,purchase of commercial houses,drinking water source,and self-supply of food have significant negative effects.Based on the findings,we believe that local rural households operate in a complex livelihood system and recommend continuous interventions targeting key influences to provide empirical research support for areas facing similar situations.展开更多
The widespread adoption of blockchain technology has led to the exploration of its numerous applications in various fields.Cryptographic algorithms and smart contracts are critical components of blockchain security.De...The widespread adoption of blockchain technology has led to the exploration of its numerous applications in various fields.Cryptographic algorithms and smart contracts are critical components of blockchain security.Despite the benefits of virtual currency,vulnerabilities in smart contracts have resulted in substantial losses to users.While researchers have identified these vulnerabilities and developed tools for detecting them,the accuracy of these tools is still far from satisfactory,with high false positive and false negative rates.In this paper,we propose a new method for detecting vulnerabilities in smart contracts using the BERT pre-training model,which can quickly and effectively process and detect smart contracts.More specifically,we preprocess and make symbol substitution in the contract,which can make the pre-training model better obtain contract features.We evaluate our method on four datasets and compare its performance with other deep learning models and vulnerability detection tools,demonstrating its superior accuracy.展开更多
Laser anti-drone technology is entering the sequence of actual combat,and it is necessary to consider the vulnerability of typical functional parts of UAVs.Since the concept of"vulnerability"was proposed,a v...Laser anti-drone technology is entering the sequence of actual combat,and it is necessary to consider the vulnerability of typical functional parts of UAVs.Since the concept of"vulnerability"was proposed,a variety of analysis programs for battlefield targets to traditional weapons have been developed,but a comprehensive assessment methodology for targets'vulnerability to laser is still missing.Based on the shotline method,this paper proposes a method that equates laser beam to shotline array,an efficient vulnerability analysis program of target to laser is established by this method,and the program includes the circuit board and the wire into the vulnerability analysis category,which improves the precision of the vulnerability analysis.Taking the UAV engine part as the target of vulnerability analysis,combine with the"life-death unit method"to calculate the laser penetration rate of various materials of the UAV,and the influence of laser weapon system parameters and striking orientation on the killing probability is quantified after introducing the penetration rate into the vulnerability analysis program.The quantitative analysis method proposed in this paper has certain general expansibility,which can provide a fresh idea for the vulnerability analysis of other targets to laser.展开更多
In recent years,the number of smart contracts deployed on blockchain has exploded.However,the issue of vulnerability has caused incalculable losses.Due to the irreversible and immutability of smart contracts,vulnerabi...In recent years,the number of smart contracts deployed on blockchain has exploded.However,the issue of vulnerability has caused incalculable losses.Due to the irreversible and immutability of smart contracts,vulnerability detection has become particularly important.With the popular use of neural network model,there has been a growing utilization of deep learning-based methods and tools for the identification of vulnerabilities within smart contracts.This paper commences by providing a succinct overview of prevalent categories of vulnerabilities found in smart contracts.Subsequently,it categorizes and presents an overview of contemporary deep learning-based tools developed for smart contract detection.These tools are categorized based on their open-source status,the data format and the type of feature extraction they employ.Then we conduct a comprehensive comparative analysis of these tools,selecting representative tools for experimental validation and comparing them with traditional tools in terms of detection coverage and accuracy.Finally,Based on the insights gained from the experimental results and the current state of research in the field of smart contract vulnerability detection tools,we suppose to provide a reference standard for developers of contract vulnerability detection tools.Meanwhile,forward-looking research directions are also proposed for deep learning-based smart contract vulnerability detection.展开更多
In recent years,the rapid development of computer software has led to numerous security problems,particularly software vulnerabilities.These flaws can cause significant harm to users’privacy and property.Current secu...In recent years,the rapid development of computer software has led to numerous security problems,particularly software vulnerabilities.These flaws can cause significant harm to users’privacy and property.Current security defect detection technology relies on manual or professional reasoning,leading to missed detection and high false detection rates.Artificial intelligence technology has led to the development of neural network models based on machine learning or deep learning to intelligently mine holes,reducing missed alarms and false alarms.So,this project aims to study Java source code defect detection methods for defects like null pointer reference exception,XSS(Transform),and Structured Query Language(SQL)injection.Also,the project uses open-source Javalang to translate the Java source code,conducts a deep search on the AST to obtain the empty syntax feature library,and converts the Java source code into a dependency graph.The feature vector is then used as the learning target for the neural network.Four types of Convolutional Neural Networks(CNN),Long Short-Term Memory(LSTM),Bi-directional Long Short-Term Memory(BiLSTM),and Attention Mechanism+Bidirectional LSTM,are used to investigate various code defects,including blank pointer reference exception,XSS,and SQL injection defects.Experimental results show that the attention mechanism in two-dimensional BLSTM is the most effective for object recognition,verifying the correctness of the method.展开更多
Chinese Loess Plateau has achieved a win-win situation concerning ecological restoration and socio-economic development.However,synergistic development may not be realized at the local scale.In areas undergoing ecolog...Chinese Loess Plateau has achieved a win-win situation concerning ecological restoration and socio-economic development.However,synergistic development may not be realized at the local scale.In areas undergoing ecological restoration,livelihood vulner-ability may be more pronounced due to the inflexibility,policy protection,and susceptibility to climate and market changes in forestry production.Although this issue has attracted academic interest,empirical studies are relatively scarce.This study,centered on Jiaxian County,Shaanxi Province of China explored the households’livelihood vulnerability and coping strategies and group heterogeneity con-cerned with livelihood structures or forestry resources through field investigation,comprehensive index assessment,and nonparametric tests.Findings showed that:1)the percentage of households with high livelihood vulnerability indicator(LVI)(>0.491)reached 46.34%.2)Eight groups in livelihood structures formed by forestry,traditional agriculture,and non-farm activities were significantly different in LVI,land resources(LR),social networks(SN),livelihood strategies(LS),housing characteristics(HC),and socio-demo-graphic profile(SDP).3)The livelihood vulnerability of the groups with highly engaged/reliance on jujube(Ziziphus jujuba)forest demonstrated more prominent livelihood vulnerability due to the increased precipitation and cold market,where the low-engaged with reliance type were significantly more vulnerable in LVI,SDP,LR,and HC.4)The threshold of behavioral triggers widely varied,and farmers dependent on forestry livelihoods showed negative coping behavior.Specifically,the cutting behavior was strongly associated with lagged years and government subsidies,guidance,and high returns of crops.Finally,the findings can provide guidance on the dir-ection of livelihood vulnerability mitigation and adaptive government management in ecologically restored areas.The issue of farmers’livelihood sustainability in the context of ecological conservation calls for immediate attention,and eco-compensations or other forms of assistance in ecologically functional areas are expected to be enhanced and diversified.展开更多
Prior studies have demonstrated that deep learning-based approaches can enhance the performance of source code vulnerability detection by training neural networks to learn vulnerability patterns in code representation...Prior studies have demonstrated that deep learning-based approaches can enhance the performance of source code vulnerability detection by training neural networks to learn vulnerability patterns in code representations.However,due to limitations in code representation and neural network design,the validity and practicality of the model still need to be improved.Additionally,due to differences in programming languages,most methods lack cross-language detection generality.To address these issues,in this paper,we analyze the shortcomings of previous code representations and neural networks.We propose a novel hierarchical code representation that combines Concrete Syntax Trees(CST)with Program Dependence Graphs(PDG).Furthermore,we introduce a Tree-Graph-Gated-Attention(TGGA)network based on gated recurrent units and attention mechanisms to build a Hierarchical Code Representation learning-based Vulnerability Detection(HCRVD)system.This system enables cross-language vulnerability detection at the function-level.The experiments show that HCRVD surpasses many competitors in vulnerability detection capabilities.It benefits from the hierarchical code representation learning method,and outperforms baseline in cross-language vulnerability detection by 9.772%and 11.819%in the C/C++and Java datasets,respectively.Moreover,HCRVD has certain ability to detect vulnerabilities in unknown programming languages and is useful in real open-source projects.HCRVD shows good validity,generality and practicality.展开更多
Software security analysts typically only have access to the executable program and cannot directly access the source code of the program.This poses significant challenges to security analysis.While it is crucial to i...Software security analysts typically only have access to the executable program and cannot directly access the source code of the program.This poses significant challenges to security analysis.While it is crucial to identify vulnerabilities in such non-source code programs,there exists a limited set of generalized tools due to the low versatility of current vulnerability mining methods.However,these tools suffer from some shortcomings.In terms of targeted fuzzing,the path searching for target points is not streamlined enough,and the completely random testing leads to an excessively large search space.Additionally,when it comes to code similarity analysis,there are issues with incomplete code feature extraction,which may result in information loss.In this paper,we propose a cross-platform and cross-architecture approach to exploit vulnerabilities using neural network obfuscation techniques.By leveraging the Angr framework,a deobfuscation technique is introduced,along with the adoption of a VEX-IR-based intermediate language conversion method.This combination allows for the unified handling of binary programs across various architectures,compilers,and compilation options.Subsequently,binary programs are processed to extract multi-level spatial features using a combination of a skip-gram model with self-attention mechanism and a bidirectional Long Short-Term Memory(LSTM)network.Finally,the graph embedding network is utilized to evaluate the similarity of program functionalities.Based on these similarity scores,a target function is determined,and symbolic execution is applied to solve the target function.The solved content serves as the initial seed for targeted fuzzing.The binary program is processed by using the de-obfuscation technique and intermediate language transformation method,and then the similarity of program functions is evaluated by using a graph embedding network,and symbolic execution is performed based on these similarity scores.This approach facilitates cross-architecture analysis of executable programs without their source codes and concurrently reduces the risk of symbolic execution path explosion.展开更多
In 2009,the World Health Organization included snakebite on the list of neglected tropical diseases,acknowledging it as a common occupational hazard for farmers,plantation workers,and others,causing tens of thousands ...In 2009,the World Health Organization included snakebite on the list of neglected tropical diseases,acknowledging it as a common occupational hazard for farmers,plantation workers,and others,causing tens of thousands of deaths and chronic physical disabilities every year.This guideline aims to provide practical information to help clinical professionals evaluate and treat snakebite victims.These recommendations are based on clinical experience and clinical research evidence.This guideline focuses on the following topics:snake venom,clinical manifestations,auxiliary examination,diagnosis,treatments,and prevention.展开更多
Introduction: Esophageal foreign bodies (EFB) are a diagnostic and therapeutic emergency because of the serious complications they can cause. Aim: This paper aimed to study the vulnating esophageal foreign bodies in t...Introduction: Esophageal foreign bodies (EFB) are a diagnostic and therapeutic emergency because of the serious complications they can cause. Aim: This paper aimed to study the vulnating esophageal foreign bodies in the ENT and Head and Neck Surgery departments of the Yalgado Ouedraogo and Bogodogo University Hospital. Methodology: This was an analytic cross-sectional study with retrospective data collection over 10 years (2012-2021). Results: We collected 91 cases of vulnating esophageal foreign bodies, i.e. 9.1 cases/year (4.7%). The mean age of the patients was 14 ± 19 years. The sex ratio was 1.6. The circumstances of occurrence were dominated by accidental ingestion of vulnating esophageal foreign bodies (98.9%). The average time to consultation was 7.5 hours. Dysphagia was the dominant symptom (64.8%). Cervico-thoracic radiography found dual contour radiopaque images in 71.4%. Esophagoscopy with rigid tube was performed in 97.8%. The average time for extraction of the vulnating esophageal foreign bodies was 8 hours. Vulnerating esophageal foreign bodies were non-organic in 84.6%. The button cell represented 64.8%. Their location was cervical in 61.5% intraoperatively. The lesion assessment found ulcerative lesions in 42.9% (p Conclusion: Vulnating esophageal foreign bodies are relatively frequent in our ENT practice. Although their diagnosis is often easy, their treatment is still difficult and requires multidisciplinary management. Thus, for us, prevention remains the first effective weapon.展开更多
Background: Venous thromboembolism (VTE) is a major public health problem due to its increasing frequency, mortality and management cost. This cost may require major financial efforts from patients, especially in deve...Background: Venous thromboembolism (VTE) is a major public health problem due to its increasing frequency, mortality and management cost. This cost may require major financial efforts from patients, especially in developing countries like ours where less than 7% of the population has health insurance. This study aimed to estimate the direct cost of managing VTE in three reference hospitals in Yaoundé. Methods: This was a cross-sectional retrospective study over a three-year period (from January 1st 2018 to December 31 2020) carried out in the Cardiology departments of the Central and General Hospitals, and the Emergency Centre of the city of Yaoundé. All patients managed during the study period for deep vein thrombosis and pulmonary embolism confirmed by venous ultrasound coupled with Doppler and computed tomography pulmonary angiography respectively were included. For each patient, we collected sociodemographic and clinical data as well as data on the cost of consultation, hospital stay, workups and medications. These data were analysed using SPSS version 23.0. Results: A total of 92 patient’s records were analysed. The median age was 60 years [48 - 68] with a sex ratio of 0.53. The median direct cost of management of venous thromboembolism was 766,375 CFAF [536,455 - 1,029,745] or $1415 USD. Management of pulmonary embolism associated with deep vein thrombosis was more costly than isolated pulmonary embolism or deep vein thrombosis. Factors influencing the direct cost of management of venous thromboembolism were: hospital structure (p = 0.015), health insurance (p 0.001), type of pulmonary embolism (p = 0.021), and length of hospital stay (p = 0.001). Conclusion: Management of VTE is a major financial burden for our patients and this burden is influenced by the hospital structure, health insurance, type of pulmonary embolism and length of hospital stay.展开更多
文摘Objective:To analyze the existing risks in breast milk management at the neonatal department and provide corresponding countermeasures.Methods:22 risk events were identified in 7 risk links in the process of bottle-feeding of breast milk.Hazard Vulnerability Analysis based on the Kaiser model was applied to investigate and evaluate the risk events.Results:High-risk events include breast milk quality inspection,hand hygiene during collection,disinfection of collectors,cold chain management,hand hygiene during the reception,breast milk closed-loop management,and post-collection disposal.Root cause analysis of high-risk events was conducted and breast milk management strategies outside the hospital and within the neonatal department were proposed.Conclusion:Hazard Vulnerability Analysis based on the Kaiser model can identify and assess neonatal breast milk management risks effectively,which helps improve the management of neonatal breast milk.It is conducive to the safe development and promotion of bottle feeding of breast milk for neonates,ensuring the quality of medical services and the safety of children.
基金Supported by the Key Innovation and Guidance Program of the Eye Hospital,School of Ophthalmology&Optometry,Wenzhou Medical University(No.YNZD2201903)the Scientific Research Foundation of the Eye Hospital,School of Ophthalmology&Optometry,Wenzhou Medical University(No.KYQD20180306)the Nursing Project of the Eye Hospital of Wenzhou Medical University(No.YNHL2201908).
文摘AIM:To assess glaucoma patient satisfaction and follow-up adherence in case management and identify associated predictors to improve healthcare quality and patient outcomes.METHODS:In this cross-sectional study,a total of 119 patients completed a Patient Satisfaction Questionnaire-18 and a sociodemographic questionnaire.Clinical data was obtained from the case management system.Follow-up adherence was defined as completing each follow-up within±30d of the scheduled time set by ophthalmologists during the study period.RESULTS:Average satisfaction scored 78.65±7,with an average of 4.39±0.58 across the seven dimensions.Age negatively correlated with satisfaction(P=0.008),whilst patients with follow-up duration of 2 or more years reported higher satisfaction(P=0.045).Multivariate logistics regression analysis revealed that longer follow-up durations were associated with lower follow-up adherence(OR=0.97,95%CI,0.95-1.00,P=0.044).Additionally,patients with suspected glaucoma(OR=2.72,95%CI,1.03-7.20,P=0.044)and those with an annual income over 100000 Chinese yuan demonstrated higher adherence(OR=5.57,95%CI,1.00-30.89,P=0.049).CONCLUSION:The case management model proves effective for glaucoma patients,with positive adherence rates.The implementation of this model can be optimized in the future based on the identified factors and extended to glaucoma patients in more hospitals.
文摘Hepatitis B virus(HBV)reactivation is a clinically significant challenge in disease management.This review explores the immunological mechanisms underlying HBV reactivation,emphasizing disease progression and management.It delves into host immune responses and reactivation’s delicate balance,spanning innate and adaptive immunity.Viral factors’disruption of this balance,as are interac-tions between viral antigens,immune cells,cytokine networks,and immune checkpoint pathways,are examined.Notably,the roles of T cells,natural killer cells,and antigen-presenting cells are discussed,highlighting their influence on disease progression.HBV reactivation’s impact on disease severity,hepatic flares,liver fibrosis progression,and hepatocellular carcinoma is detailed.Management strategies,including anti-viral and immunomodulatory approaches,are critically analyzed.The role of prophylactic anti-viral therapy during immunosuppressive treatments is explored alongside novel immunotherapeutic interventions to restore immune control and prevent reactivation.In conclusion,this compre-hensive review furnishes a holistic view of the immunological mechanisms that propel HBV reactivation.With a dedicated focus on understanding its implic-ations for disease progression and the prospects of efficient management stra-tegies,this article contributes significantly to the knowledge base.The more profound insights into the intricate interactions between viral elements and the immune system will inform evidence-based approaches,ultimately enhancing disease management and elevating patient outcomes.The dynamic landscape of management strategies is critically scrutinized,spanning anti-viral and immunomodulatory approaches.The role of prophylactic anti-viral therapy in preventing reactivation during immunosuppressive treatments and the potential of innovative immunotherapeutic interventions to restore immune control and proactively deter reactivation.
基金financially supported by the National Key Research and Development Program(Grant No.2022YFE0207400)the National Natural Science Foundation of China(Grant No.U22A20168 and 52174225)。
文摘Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well.
基金This study protocol was approved by the General Hospital of the Yangtze River Shipping,and all the families have voluntarily participated in the study and have signed informed consent forms.
文摘BACKGROUND Regarding the incidence of malignant tumors in China,the incidence of liver cancer ranks fourth,second only to lung,gastric,and esophageal cancers.The case fatality rate ranks third after lung and cervical cancer.In a previous study,the whole-process management model was applied to patients with breast cancer,which effectively reduced their negative emotions and improved treatment adherence and nursing satisfaction.METHODS In this single-center,randomized,controlled study,60 randomly selected patients with liver cancer who had been admitted to our hospital from January 2021 to January 2022 were randomly divided into an observation group(n=30),who received whole-process case management on the basis of routine nursing mea-sures,and a control group(n=30),who were given routine nursing measures.We compared differences between the two groups in terms of anxiety,depression,the level of hope,self-care ability,symptom distress,sleep quality,and quality of life.RESULTS Post-intervention,Hamilton anxiety scale,Hamilton depression scale,memory symptom assessment scale,and Pittsburgh sleep quality index scores in both groups were lower than those pre-intervention,and the observation group had lower scores than the control group(P<0.05).Herth hope index,self-care ability assessment scale-revision in Chinese,and quality of life measurement scale for patients with liver cancer scores in both groups were higher than those pre-intervention,with higher scores in the observation group compared with the control group(P<0.05).CONCLUSION Whole-process case management can effectively reduce anxiety and depression in patients with liver cancer,alleviate symptoms and problems,and improve the level of hope,self-care ability,sleep quality,and quality of life,as well as provide feasible nursing alternatives for patients with liver cancer.
文摘BACKGROUND Colorectal signet-ring cell carcinoma(CSRCC)is a rare clinical entity which accounts for approximately 1%of all colorectal cancers.Although multiple studies concerning this specific topic have been published in the past decades,the pathogenesis,associated risk factors,and potential implications on treatment are still poorly understood.Besides the low incidence,historically confusing histological criteria have resulted in confusing data.Nevertheless,the rising incidence of CSRCC along with relatively young age at presentation and associated dismal prognosis,highlight the actual interest to synthesize the known literature regarding CSRCC.AIM To provide an updated overview of risk factors,prognosis,and management of CSRCC.METHODS A literature search in the MEDLINE/PubMed database was conducted with the following search terms used:‘Signet ring cell carcinoma’and‘colorectal’.Studies in English language,published after January 1980,were included.Studies included in the qualitative synthesis were evaluated for content concerning epidemiology,risk factors,and clinical,diagnostic,histological,and molecular features,as well as metastatic pattern and therapeutic management.If possible,presented data was extracted in order to present a more detailed overview of the literature.RESULTS In total,67 articles were included for qualitative analysis,of which 54 were eligible for detailed data extraction.CSRCC has a reported incidence between 0.1%-2.4%and frequently presents with advanced disease stage at the time of diagnosis.CSRCC is associated with an impaired overall survival(5-year OS:0%-46%)and a worse stagecorrected outcome compared to mucinous and not otherwise specified adenocarcinoma.The systematic use of exploratory laparoscopy to determine the presence of peritoneal metastases has been advised.Surgery is the mainstay of treatment,although the rates of curative resection in CSRCC(21%-82%)are lower compared to those in other histological types.In case of peritoneal metastasis,cytoreductive surgery with hyperthermic intraperitoneal chemotherapy should only be proposed in selected patients.CONCLUSION CSRCC is a rare clinical entity most often characterized by young age and advanced disease at presentation.As such,diagnostic modalities and therapeutic approach should be tailored accordingly.
文摘The detection of software vulnerabilities written in C and C++languages takes a lot of attention and interest today.This paper proposes a new framework called DrCSE to improve software vulnerability detection.It uses an intelligent computation technique based on the combination of two methods:Rebalancing data and representation learning to analyze and evaluate the code property graph(CPG)of the source code for detecting abnormal behavior of software vulnerabilities.To do that,DrCSE performs a combination of 3 main processing techniques:(i)building the source code feature profiles,(ii)rebalancing data,and(iii)contrastive learning.In which,the method(i)extracts the source code’s features based on the vertices and edges of the CPG.The method of rebalancing data has the function of supporting the training process by balancing the experimental dataset.Finally,contrastive learning techniques learn the important features of the source code by finding and pulling similar ones together while pushing the outliers away.The experiment part of this paper demonstrates the superiority of the DrCSE Framework for detecting source code security vulnerabilities using the Verum dataset.As a result,the method proposed in the article has brought a pretty good performance in all metrics,especially the Precision and Recall scores of 39.35%and 69.07%,respectively,proving the efficiency of the DrCSE Framework.It performs better than other approaches,with a 5%boost in Precision and a 5%boost in Recall.Overall,this is considered the best research result for the software vulnerability detection problem using the Verum dataset according to our survey to date.
基金supported by the Ministry of Finance of the Republic of Indonesia that provides Beasiswa Unggulan Dosen Indonesia (BUDI) scholarships through the Financial Fund Management Institution。
文摘Jeneberang watershed is vital,particularly for people living in Gowa Regency(South Sulawesi Province,Indonesia),who benefit from its many advantages.Landslides and floods occur every year in the Jeneberang watershed,so it is imperative to understand the socio-economic vulnerability of this region.This research aims to identify the vulnerability level of the Jeneberang watershed so that the government can prioritize areas with high vulnerability level and formulate effective strategies to reduce these the vulnerability.Specifically,this study was conducted in 12 districts located in the Jeneberang watershed.The primary data were collected from questionnaires completed by community members,community leaders,and various stakeholders,and the secondary data were from the Landsat satellite imagery in 2020,the Badan Push Statistic of Gowa Regency,and some governmental agencies.The socio-economic vulnerability variables were determined using the Multiple Criteria Decision Analysis(MCDA)method,and each variable was weighted and analyzed using the Geographical Information System(GIS).The study reveals that the levels of socio-economic vulnerability are affected by variables such as population density,vulnerable groups(disabled people,elderly people,and young people),road network and settlement,percentage of poor people,and productive land area in the Jeneberang watershed.Moreover,all of the 12 districts in the Jeneberang watershed are included in the medium vulnerability level,with the mean percentage of socio-economic vulnerability around 50.92%.The socio-economic vulnerability of Bajeng,Pallangga,and Somba Opu districts is categorized at high level,the socio-economic vulnerability of Bungaya,Parangloe,and Tombolo Pao districts is classified as medium level,and the remaining 6 districts(Barombong,Bontolempangan,Bontomarannu,Manuju,Parigi,and Tinggimoncong)are ranked as low socio-economic vulnerability.This study can help policy-makers to formulate strategy that contributes to the protection of biodiversity and sustainable development of the Jeneberang watershed,while improving disaster resilience and preparedness of the watershed.
基金This work is the result of commissioned research project supported by the Affiliated Institute of ETRI(2022-086)received by Junho AhnThis research was supported by the National Research Foundation of Korea(NRF)Basic Science Research Program funded by the Ministry of Education(No.2020R1A6A1A03040583)this work was supported by Korea Institute for Advancement of Technology(KIAT)Grant funded by the Korea government(MOTIE)(P0008691,HRD Program for Industrial Innovation).
文摘This research aims to propose a practical framework designed for the automatic analysis of a product’s comprehensive functionality and security vulnerabilities,generating applicable guidelines based on real-world software.The existing analysis of software security vulnerabilities often focuses on specific features or modules.This partial and arbitrary analysis of the security vulnerabilities makes it challenging to comprehend the overall security vulnerabilities of the software.The key novelty lies in overcoming the constraints of partial approaches.The proposed framework utilizes data from various sources to create a comprehensive functionality profile,facilitating the derivation of real-world security guidelines.Security guidelines are dynamically generated by associating functional security vulnerabilities with the latest Common Vulnerabilities and Exposure(CVE)and Common Vulnerability Scoring System(CVSS)scores,resulting in automated guidelines tailored to each product.These guidelines are not only practical but also applicable in real-world software,allowing for prioritized security responses.The proposed framework is applied to virtual private network(VPN)software,wherein a validated Level 2 data flow diagram is generated using the Spoofing,Tampering,Repudiation,Information Disclosure,Denial of Service,and Elevation of privilege(STRIDE)technique with references to various papers and examples from related software.The analysis resulted in the identification of a total of 121 vulnerabilities.The successful implementation and validation demonstrate the framework’s efficacy in generating customized guidelines for entire systems,subsystems,and selected modules.
基金funded by the National Natural Science Foundation of China(Grants No.41901209,42001173,and 41661144038).
文摘To explore the livelihood status and key influencing factors of rural households in the minority areas,we collected flat data from 284 rural households in 32 villages across 12 counties of Western Sichuan from 2021 to 2022.We conducted participatory household survey on the livelihood status of the rural households and try to identify the key factors to influence their livelihood vulnerability using multiple linear regression.The results showed that:the livelihood situation of the rural households is relatively vulnerable.The vulnerability varies significantly with the income levels,education levels,and income sources.The vulnerability of farm households,categorized from low to high livelihood types,follows the sequence:non-agricultural dominant households,non-agricultural households,agricultural dominant households,and pure agricultural households.The degree of damage to the natural environment,education costs,loan opportunities,the proportion of agricultural income to annual household income,and the presence of sick people in the household have significant positive effects on the livelihood vulnerability index(LVI)of rural households;while help from relatives and friends,net income per capita,household size,household education,agricultural land area,participation in industrial organizations,number of livestock,purchase of commercial houses,drinking water source,and self-supply of food have significant negative effects.Based on the findings,we believe that local rural households operate in a complex livelihood system and recommend continuous interventions targeting key influences to provide empirical research support for areas facing similar situations.
基金supported by the National Key Research and Development Plan in China(Grant No.2020YFB1005500)。
文摘The widespread adoption of blockchain technology has led to the exploration of its numerous applications in various fields.Cryptographic algorithms and smart contracts are critical components of blockchain security.Despite the benefits of virtual currency,vulnerabilities in smart contracts have resulted in substantial losses to users.While researchers have identified these vulnerabilities and developed tools for detecting them,the accuracy of these tools is still far from satisfactory,with high false positive and false negative rates.In this paper,we propose a new method for detecting vulnerabilities in smart contracts using the BERT pre-training model,which can quickly and effectively process and detect smart contracts.More specifically,we preprocess and make symbol substitution in the contract,which can make the pre-training model better obtain contract features.We evaluate our method on four datasets and compare its performance with other deep learning models and vulnerability detection tools,demonstrating its superior accuracy.
基金National Natural Science Foundation of China(Grant Nos.62005276,62175234)the Scientific and Technological Development Program of Jilin,China(Grant No.20230508111RC)to provide fund for this research。
文摘Laser anti-drone technology is entering the sequence of actual combat,and it is necessary to consider the vulnerability of typical functional parts of UAVs.Since the concept of"vulnerability"was proposed,a variety of analysis programs for battlefield targets to traditional weapons have been developed,but a comprehensive assessment methodology for targets'vulnerability to laser is still missing.Based on the shotline method,this paper proposes a method that equates laser beam to shotline array,an efficient vulnerability analysis program of target to laser is established by this method,and the program includes the circuit board and the wire into the vulnerability analysis category,which improves the precision of the vulnerability analysis.Taking the UAV engine part as the target of vulnerability analysis,combine with the"life-death unit method"to calculate the laser penetration rate of various materials of the UAV,and the influence of laser weapon system parameters and striking orientation on the killing probability is quantified after introducing the penetration rate into the vulnerability analysis program.The quantitative analysis method proposed in this paper has certain general expansibility,which can provide a fresh idea for the vulnerability analysis of other targets to laser.
基金funded by the Major PublicWelfare Special Fund of Henan Province(No.201300210200)the Major Science and Technology Research Special Fund of Henan Province(No.221100210400).
文摘In recent years,the number of smart contracts deployed on blockchain has exploded.However,the issue of vulnerability has caused incalculable losses.Due to the irreversible and immutability of smart contracts,vulnerability detection has become particularly important.With the popular use of neural network model,there has been a growing utilization of deep learning-based methods and tools for the identification of vulnerabilities within smart contracts.This paper commences by providing a succinct overview of prevalent categories of vulnerabilities found in smart contracts.Subsequently,it categorizes and presents an overview of contemporary deep learning-based tools developed for smart contract detection.These tools are categorized based on their open-source status,the data format and the type of feature extraction they employ.Then we conduct a comprehensive comparative analysis of these tools,selecting representative tools for experimental validation and comparing them with traditional tools in terms of detection coverage and accuracy.Finally,Based on the insights gained from the experimental results and the current state of research in the field of smart contract vulnerability detection tools,we suppose to provide a reference standard for developers of contract vulnerability detection tools.Meanwhile,forward-looking research directions are also proposed for deep learning-based smart contract vulnerability detection.
基金This work is supported by the Provincial Key Science and Technology Special Project of Henan(No.221100240100)。
文摘In recent years,the rapid development of computer software has led to numerous security problems,particularly software vulnerabilities.These flaws can cause significant harm to users’privacy and property.Current security defect detection technology relies on manual or professional reasoning,leading to missed detection and high false detection rates.Artificial intelligence technology has led to the development of neural network models based on machine learning or deep learning to intelligently mine holes,reducing missed alarms and false alarms.So,this project aims to study Java source code defect detection methods for defects like null pointer reference exception,XSS(Transform),and Structured Query Language(SQL)injection.Also,the project uses open-source Javalang to translate the Java source code,conducts a deep search on the AST to obtain the empty syntax feature library,and converts the Java source code into a dependency graph.The feature vector is then used as the learning target for the neural network.Four types of Convolutional Neural Networks(CNN),Long Short-Term Memory(LSTM),Bi-directional Long Short-Term Memory(BiLSTM),and Attention Mechanism+Bidirectional LSTM,are used to investigate various code defects,including blank pointer reference exception,XSS,and SQL injection defects.Experimental results show that the attention mechanism in two-dimensional BLSTM is the most effective for object recognition,verifying the correctness of the method.
基金Under the auspices of National Natural Science Foundation of China(No.42001202,52209030,42171208)Young Talent Fund of Association for Science and Technology in Shaanxi,China(No.20240703)+1 种基金Social Science Foundation Project of Shaanxi Province(No.2022R019)Fundamental Research Funds for the Central Universities(No.GK202207005)。
文摘Chinese Loess Plateau has achieved a win-win situation concerning ecological restoration and socio-economic development.However,synergistic development may not be realized at the local scale.In areas undergoing ecological restoration,livelihood vulner-ability may be more pronounced due to the inflexibility,policy protection,and susceptibility to climate and market changes in forestry production.Although this issue has attracted academic interest,empirical studies are relatively scarce.This study,centered on Jiaxian County,Shaanxi Province of China explored the households’livelihood vulnerability and coping strategies and group heterogeneity con-cerned with livelihood structures or forestry resources through field investigation,comprehensive index assessment,and nonparametric tests.Findings showed that:1)the percentage of households with high livelihood vulnerability indicator(LVI)(>0.491)reached 46.34%.2)Eight groups in livelihood structures formed by forestry,traditional agriculture,and non-farm activities were significantly different in LVI,land resources(LR),social networks(SN),livelihood strategies(LS),housing characteristics(HC),and socio-demo-graphic profile(SDP).3)The livelihood vulnerability of the groups with highly engaged/reliance on jujube(Ziziphus jujuba)forest demonstrated more prominent livelihood vulnerability due to the increased precipitation and cold market,where the low-engaged with reliance type were significantly more vulnerable in LVI,SDP,LR,and HC.4)The threshold of behavioral triggers widely varied,and farmers dependent on forestry livelihoods showed negative coping behavior.Specifically,the cutting behavior was strongly associated with lagged years and government subsidies,guidance,and high returns of crops.Finally,the findings can provide guidance on the dir-ection of livelihood vulnerability mitigation and adaptive government management in ecologically restored areas.The issue of farmers’livelihood sustainability in the context of ecological conservation calls for immediate attention,and eco-compensations or other forms of assistance in ecologically functional areas are expected to be enhanced and diversified.
基金funded by the Major Science and Technology Projects in Henan Province,China,Grant No.221100210600.
文摘Prior studies have demonstrated that deep learning-based approaches can enhance the performance of source code vulnerability detection by training neural networks to learn vulnerability patterns in code representations.However,due to limitations in code representation and neural network design,the validity and practicality of the model still need to be improved.Additionally,due to differences in programming languages,most methods lack cross-language detection generality.To address these issues,in this paper,we analyze the shortcomings of previous code representations and neural networks.We propose a novel hierarchical code representation that combines Concrete Syntax Trees(CST)with Program Dependence Graphs(PDG).Furthermore,we introduce a Tree-Graph-Gated-Attention(TGGA)network based on gated recurrent units and attention mechanisms to build a Hierarchical Code Representation learning-based Vulnerability Detection(HCRVD)system.This system enables cross-language vulnerability detection at the function-level.The experiments show that HCRVD surpasses many competitors in vulnerability detection capabilities.It benefits from the hierarchical code representation learning method,and outperforms baseline in cross-language vulnerability detection by 9.772%and 11.819%in the C/C++and Java datasets,respectively.Moreover,HCRVD has certain ability to detect vulnerabilities in unknown programming languages and is useful in real open-source projects.HCRVD shows good validity,generality and practicality.
文摘Software security analysts typically only have access to the executable program and cannot directly access the source code of the program.This poses significant challenges to security analysis.While it is crucial to identify vulnerabilities in such non-source code programs,there exists a limited set of generalized tools due to the low versatility of current vulnerability mining methods.However,these tools suffer from some shortcomings.In terms of targeted fuzzing,the path searching for target points is not streamlined enough,and the completely random testing leads to an excessively large search space.Additionally,when it comes to code similarity analysis,there are issues with incomplete code feature extraction,which may result in information loss.In this paper,we propose a cross-platform and cross-architecture approach to exploit vulnerabilities using neural network obfuscation techniques.By leveraging the Angr framework,a deobfuscation technique is introduced,along with the adoption of a VEX-IR-based intermediate language conversion method.This combination allows for the unified handling of binary programs across various architectures,compilers,and compilation options.Subsequently,binary programs are processed to extract multi-level spatial features using a combination of a skip-gram model with self-attention mechanism and a bidirectional Long Short-Term Memory(LSTM)network.Finally,the graph embedding network is utilized to evaluate the similarity of program functionalities.Based on these similarity scores,a target function is determined,and symbolic execution is applied to solve the target function.The solved content serves as the initial seed for targeted fuzzing.The binary program is processed by using the de-obfuscation technique and intermediate language transformation method,and then the similarity of program functions is evaluated by using a graph embedding network,and symbolic execution is performed based on these similarity scores.This approach facilitates cross-architecture analysis of executable programs without their source codes and concurrently reduces the risk of symbolic execution path explosion.
基金supported by the National Science Foundation of China(82160647)Hainan Clinical Medical Research Center Project(LCYX202310)+1 种基金Hainan Provincial Major Science and Technology Projects(ZDKJ202004)CAMS Innovation Fund for Medical Sciences(2019-I2M-5-023).
文摘In 2009,the World Health Organization included snakebite on the list of neglected tropical diseases,acknowledging it as a common occupational hazard for farmers,plantation workers,and others,causing tens of thousands of deaths and chronic physical disabilities every year.This guideline aims to provide practical information to help clinical professionals evaluate and treat snakebite victims.These recommendations are based on clinical experience and clinical research evidence.This guideline focuses on the following topics:snake venom,clinical manifestations,auxiliary examination,diagnosis,treatments,and prevention.
文摘Introduction: Esophageal foreign bodies (EFB) are a diagnostic and therapeutic emergency because of the serious complications they can cause. Aim: This paper aimed to study the vulnating esophageal foreign bodies in the ENT and Head and Neck Surgery departments of the Yalgado Ouedraogo and Bogodogo University Hospital. Methodology: This was an analytic cross-sectional study with retrospective data collection over 10 years (2012-2021). Results: We collected 91 cases of vulnating esophageal foreign bodies, i.e. 9.1 cases/year (4.7%). The mean age of the patients was 14 ± 19 years. The sex ratio was 1.6. The circumstances of occurrence were dominated by accidental ingestion of vulnating esophageal foreign bodies (98.9%). The average time to consultation was 7.5 hours. Dysphagia was the dominant symptom (64.8%). Cervico-thoracic radiography found dual contour radiopaque images in 71.4%. Esophagoscopy with rigid tube was performed in 97.8%. The average time for extraction of the vulnating esophageal foreign bodies was 8 hours. Vulnerating esophageal foreign bodies were non-organic in 84.6%. The button cell represented 64.8%. Their location was cervical in 61.5% intraoperatively. The lesion assessment found ulcerative lesions in 42.9% (p Conclusion: Vulnating esophageal foreign bodies are relatively frequent in our ENT practice. Although their diagnosis is often easy, their treatment is still difficult and requires multidisciplinary management. Thus, for us, prevention remains the first effective weapon.
文摘Background: Venous thromboembolism (VTE) is a major public health problem due to its increasing frequency, mortality and management cost. This cost may require major financial efforts from patients, especially in developing countries like ours where less than 7% of the population has health insurance. This study aimed to estimate the direct cost of managing VTE in three reference hospitals in Yaoundé. Methods: This was a cross-sectional retrospective study over a three-year period (from January 1st 2018 to December 31 2020) carried out in the Cardiology departments of the Central and General Hospitals, and the Emergency Centre of the city of Yaoundé. All patients managed during the study period for deep vein thrombosis and pulmonary embolism confirmed by venous ultrasound coupled with Doppler and computed tomography pulmonary angiography respectively were included. For each patient, we collected sociodemographic and clinical data as well as data on the cost of consultation, hospital stay, workups and medications. These data were analysed using SPSS version 23.0. Results: A total of 92 patient’s records were analysed. The median age was 60 years [48 - 68] with a sex ratio of 0.53. The median direct cost of management of venous thromboembolism was 766,375 CFAF [536,455 - 1,029,745] or $1415 USD. Management of pulmonary embolism associated with deep vein thrombosis was more costly than isolated pulmonary embolism or deep vein thrombosis. Factors influencing the direct cost of management of venous thromboembolism were: hospital structure (p = 0.015), health insurance (p 0.001), type of pulmonary embolism (p = 0.021), and length of hospital stay (p = 0.001). Conclusion: Management of VTE is a major financial burden for our patients and this burden is influenced by the hospital structure, health insurance, type of pulmonary embolism and length of hospital stay.