An L(3, 2, 1)-labeling of a graph G is a function from the vertex set V(G) to the set of all nonnegative integers such that |f(u)-f(v)|≥3 if dG(u,v) = 1, |f(u)-f(v)|≥2 if dG(u,v) = 2, and |f(u...An L(3, 2, 1)-labeling of a graph G is a function from the vertex set V(G) to the set of all nonnegative integers such that |f(u)-f(v)|≥3 if dG(u,v) = 1, |f(u)-f(v)|≥2 if dG(u,v) = 2, and |f(u)-f(v)|≥1 if dG(u,v) = 3. The L(3, 2,1)-labeling problem is to find the smallest number λ3(G) such that there exists an L(3, 2,1)-labeling function with no label greater than it. This paper studies the problem for bipartite graphs. We obtain some bounds of λ3 for bipartite graphs and its subclasses. Moreover, we provide a best possible condition for a tree T such that λ3(T) attains the minimum value.展开更多
基金National Natural Science Foundation of China(No.10671074 and No.60673048)Natural Science Foundation of Education Ministry of Anhui Province(No.KJ2007B124 and No.2006KJ256B)
基金The NSF (60673048) of China the NSF (KJ2009B002,KJ2009B237Z) of Education Ministry of Anhui Province.
文摘An L(3, 2, 1)-labeling of a graph G is a function from the vertex set V(G) to the set of all nonnegative integers such that |f(u)-f(v)|≥3 if dG(u,v) = 1, |f(u)-f(v)|≥2 if dG(u,v) = 2, and |f(u)-f(v)|≥1 if dG(u,v) = 3. The L(3, 2,1)-labeling problem is to find the smallest number λ3(G) such that there exists an L(3, 2,1)-labeling function with no label greater than it. This paper studies the problem for bipartite graphs. We obtain some bounds of λ3 for bipartite graphs and its subclasses. Moreover, we provide a best possible condition for a tree T such that λ3(T) attains the minimum value.