In this paper, as a generalization of the notion of(∈, ∈∨ q)-fuzzy ideals, we introduced the notion of(∈, ∈∨ qδ)-fuzzy ideals and investigated their properties in BCKalgebras. Several equivalent characterizatio...In this paper, as a generalization of the notion of(∈, ∈∨ q)-fuzzy ideals, we introduced the notion of(∈, ∈∨ qδ)-fuzzy ideals and investigated their properties in BCKalgebras. Several equivalent characterizations of(∈, ∈∨ qδ)-fuzzy ideals are obtained and relations between(∈, ∈∨ qδ)-fuzzy ideals and ideals are discussed in BCK-algebras.展开更多
The concept of(∈,∈∨q)-fuzzy subnear-rings(ideals) of a near-ring is introduced and some of its related properties are investigated.In particular,the relationships among ordinary fuzzy subnear-rings(ideals),(...The concept of(∈,∈∨q)-fuzzy subnear-rings(ideals) of a near-ring is introduced and some of its related properties are investigated.In particular,the relationships among ordinary fuzzy subnear-rings(ideals),(∈,∈∨ q)-fuzzy subnear-rings(ideals) and(∈,∈∨q)-fuzzy subnear-rings(ideals) of near-rings are described.Finally,some characterization of [μ]t is given by means of(∈,∈∨ q)-fuzzy ideals.展开更多
With a new idea, we redefine generalized fuzzy subnear-rings (ideals) of a near- ring and investigate some of its related properties. Some new characterizations are given. In particular, we introduce the concepts of...With a new idea, we redefine generalized fuzzy subnear-rings (ideals) of a near- ring and investigate some of its related properties. Some new characterizations are given. In particular, we introduce the concepts of strong prime (or semiprime) (∈, ∈∨ q)-fuzzy ideals of near-rings, and discuss the relationship between strong prime (or semiprime) (∈, ∈∨ q)-fuzzy ideals and prime (or semiprime) (∈, ∈∨ q)-fuzzy ideals of near-rings.展开更多
给出(∈,∈∨q(λ,μ))-模糊子近环和理想的全新概念及刻画,并获得一些充分必要条件。其中值得指出的是当λ=0,μ=0.5时可以得到Davvaz文章中的相关结论[B.Davvaz,(∈,∈∨q)-fuzzysubnear-rings and ideals,soft comput.,2006,10:206-2...给出(∈,∈∨q(λ,μ))-模糊子近环和理想的全新概念及刻画,并获得一些充分必要条件。其中值得指出的是当λ=0,μ=0.5时可以得到Davvaz文章中的相关结论[B.Davvaz,(∈,∈∨q)-fuzzysubnear-rings and ideals,soft comput.,2006,10:206-211]。当λ=0,μ=1时可以得到Rosenfeld意义下的结论。展开更多
The concept of quasi-coincidence of a fuzzy interval value in an interval valued fuzzy set is a generalization of the quasi-coincidence of a fuzzy point in a fuzzy set. With this new concept, the interval valued (∈,...The concept of quasi-coincidence of a fuzzy interval value in an interval valued fuzzy set is a generalization of the quasi-coincidence of a fuzzy point in a fuzzy set. With this new concept, the interval valued (∈, ∈ Vq)-fuzzy interior ideal in semigroups is introduced. In fact, this kind of new fuzzy interior ideals is a generalization of fuzzy interior ideals in semigroups. In this paper, this kind of fuzzy interior ideals and related properties will be investigated. Moreover, the concept of a fuzzy subgroup with threshold is extended to the concept of an interval valued fuzzy interior ideal with threshold in semigroups.展开更多
The concept of quasi-coincidence of a fuzzy interval value in an interval valued fuzzy set is considered. In fact, this concept is a generalized concept of the quasi-coincidence of a fuzzy point in a fuzzy set. By usi...The concept of quasi-coincidence of a fuzzy interval value in an interval valued fuzzy set is considered. In fact, this concept is a generalized concept of the quasi-coincidence of a fuzzy point in a fuzzy set. By using this new concept, the authors define the notion of interval valued (∈, ∈ Vq)fuzzy h-ideals of hemirings and study their related properties. In addition, the authors also extend the concept of a fuzzy subgroup with thresholds to the concept of an interval valued fuzzy h-ideal with thresholds in hemirings.展开更多
In this paper we introduce new generalized fuzzy Lie ideals of Lie algebras and study some of their important properties.We characterize these generalized Lie ideals of Lie algebras by their level subsets.Some charact...In this paper we introduce new generalized fuzzy Lie ideals of Lie algebras and study some of their important properties.We characterize these generalized Lie ideals of Lie algebras by their level subsets.Some characterization of the generalized fuzzy Lie ideals of Lie algebras are also established.展开更多
We describe the relationship between the fuzzy sets and the algebraic hyperstructures. In fact, this paper is a continuation of the ideas presented by Davvaz in (Fuzzy Sets Syst., 117: 477- 484, 2001) and Bhakat an...We describe the relationship between the fuzzy sets and the algebraic hyperstructures. In fact, this paper is a continuation of the ideas presented by Davvaz in (Fuzzy Sets Syst., 117: 477- 484, 2001) and Bhakat and Das in (Fuzzy Sets Syst., 80: 359-368, 1996). The concept of the quasicoincidence of a fuzzy interval value with an interval-valued fuzzy set is introduced and this is a natural generalization of the quasi-coincidence of a fuzzy point in fuzzy sets. By using this new idea, the concept of interval-valued (α,β)-fuzzy sub-hypermodules of a hypermodule is defined. This newly defined interval-valued (α,β)-fuzzy sub-hypermodule is a We shall study such fuzzy sub-hypermodules and sub-hypermodules of a hypermodule. generalization of the usual fuzzy sub-hypermodule. consider the implication-based interval-valued fuzzy展开更多
基金Supported by the National Science Foundation of China(60774073)
文摘In this paper, as a generalization of the notion of(∈, ∈∨ q)-fuzzy ideals, we introduced the notion of(∈, ∈∨ qδ)-fuzzy ideals and investigated their properties in BCKalgebras. Several equivalent characterizations of(∈, ∈∨ qδ)-fuzzy ideals are obtained and relations between(∈, ∈∨ qδ)-fuzzy ideals and ideals are discussed in BCK-algebras.
基金Supported by the National Natural Science Foundation of China (60875034)the Natural Science Foundationof Education Committee of Hubei Province (D20092901+3 种基金Q20092907D20082903B200529001)the NaturalScience Foundation of Hubei Province (2008CDB341)
文摘The concept of(∈,∈∨q)-fuzzy subnear-rings(ideals) of a near-ring is introduced and some of its related properties are investigated.In particular,the relationships among ordinary fuzzy subnear-rings(ideals),(∈,∈∨ q)-fuzzy subnear-rings(ideals) and(∈,∈∨q)-fuzzy subnear-rings(ideals) of near-rings are described.Finally,some characterization of [μ]t is given by means of(∈,∈∨ q)-fuzzy ideals.
基金Supported by the National Natural Science Foundation of China(60875034)the Natural Science Foundation of Education Committee of Hubei Province(D20092901),the Natural Science Foundation of Hubei Province(2009CDB340)
文摘With a new idea, we redefine generalized fuzzy subnear-rings (ideals) of a near- ring and investigate some of its related properties. Some new characterizations are given. In particular, we introduce the concepts of strong prime (or semiprime) (∈, ∈∨ q)-fuzzy ideals of near-rings, and discuss the relationship between strong prime (or semiprime) (∈, ∈∨ q)-fuzzy ideals and prime (or semiprime) (∈, ∈∨ q)-fuzzy ideals of near-rings.
文摘给出(∈,∈∨q(λ,μ))-模糊子近环和理想的全新概念及刻画,并获得一些充分必要条件。其中值得指出的是当λ=0,μ=0.5时可以得到Davvaz文章中的相关结论[B.Davvaz,(∈,∈∨q)-fuzzysubnear-rings and ideals,soft comput.,2006,10:206-211]。当λ=0,μ=1时可以得到Rosenfeld意义下的结论。
基金the National Natural Science Foundation of China (No. 60474022) the Key Science Foundation of Education Committee of Hubei Province (No. D200729003).
文摘The concept of quasi-coincidence of a fuzzy interval value in an interval valued fuzzy set is a generalization of the quasi-coincidence of a fuzzy point in a fuzzy set. With this new concept, the interval valued (∈, ∈ Vq)-fuzzy interior ideal in semigroups is introduced. In fact, this kind of new fuzzy interior ideals is a generalization of fuzzy interior ideals in semigroups. In this paper, this kind of fuzzy interior ideals and related properties will be investigated. Moreover, the concept of a fuzzy subgroup with threshold is extended to the concept of an interval valued fuzzy interior ideal with threshold in semigroups.
基金Supported by the National Natural Science Foundation of China under Grant No.60474022the Key Science Foundation of Education Committee of Hubei Province,China under Grant No.D200729003
文摘The concept of quasi-coincidence of a fuzzy interval value in an interval valued fuzzy set is considered. In fact, this concept is a generalized concept of the quasi-coincidence of a fuzzy point in a fuzzy set. By using this new concept, the authors define the notion of interval valued (∈, ∈ Vq)fuzzy h-ideals of hemirings and study their related properties. In addition, the authors also extend the concept of a fuzzy subgroup with thresholds to the concept of an interval valued fuzzy h-ideal with thresholds in hemirings.
文摘In this paper we introduce new generalized fuzzy Lie ideals of Lie algebras and study some of their important properties.We characterize these generalized Lie ideals of Lie algebras by their level subsets.Some characterization of the generalized fuzzy Lie ideals of Lie algebras are also established.
基金the National Natural Science Foundation of China(60474022)the Key Science Foundation of Education Commission of Hubei Province, China (D200729003+1 种基金D200529001)the research of the third author is partially supported by an RGC grant (CUHK) #2060297(05/07)
文摘We describe the relationship between the fuzzy sets and the algebraic hyperstructures. In fact, this paper is a continuation of the ideas presented by Davvaz in (Fuzzy Sets Syst., 117: 477- 484, 2001) and Bhakat and Das in (Fuzzy Sets Syst., 80: 359-368, 1996). The concept of the quasicoincidence of a fuzzy interval value with an interval-valued fuzzy set is introduced and this is a natural generalization of the quasi-coincidence of a fuzzy point in fuzzy sets. By using this new idea, the concept of interval-valued (α,β)-fuzzy sub-hypermodules of a hypermodule is defined. This newly defined interval-valued (α,β)-fuzzy sub-hypermodule is a We shall study such fuzzy sub-hypermodules and sub-hypermodules of a hypermodule. generalization of the usual fuzzy sub-hypermodule. consider the implication-based interval-valued fuzzy