In this paper, we make use of the auxiliary equation and the expanded mapping methods to find the new exact periodic solutions for (2+1)-dimensional dispersive long wave equations in mathematical physics, which are...In this paper, we make use of the auxiliary equation and the expanded mapping methods to find the new exact periodic solutions for (2+1)-dimensional dispersive long wave equations in mathematical physics, which are expressed by Jacobi elliptic functions, and obtain some new solitary wave solutions (m → 1). This method can also be used to explore new periodic wave solutions for other nonlinear evolution equations.展开更多
For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ...For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.展开更多
With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transfor...With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transformation, improved mapping approach, and variable separation approach, among which there are rational solitary wave solutions, periodic wave solutions and rational wave solutions.展开更多
A new generalized extended F-expansion method is presented for finding periodic wave solutions of nonlinear evolution equations in mathematical physics. As an application of this method, we study the (2+1)-dimensio...A new generalized extended F-expansion method is presented for finding periodic wave solutions of nonlinear evolution equations in mathematical physics. As an application of this method, we study the (2+1)-dimensional dispersive long wave equation. With the aid of computerized symbolic computation, a number of doubly periodic wave solutions expressed by various Jacobi elliptic functions are obtained. In the limit cases, the solitary wave solutions are derived as well.展开更多
In the past few decades, the (1 + 1)-dimensional nonlinear Schr6dinger (NLS) equation had been derived for envelope Rossby solitary waves in a line by employing the perturbation expansion method. But, with the de...In the past few decades, the (1 + 1)-dimensional nonlinear Schr6dinger (NLS) equation had been derived for envelope Rossby solitary waves in a line by employing the perturbation expansion method. But, with the development of theory, we note that the (1+1)-dimensional model cannot reflect the evolution of envelope Rossby solitary waves in a plane. In this paper, by constructing a new (2+1)-dimensional multiscale transform, we derive the (2+1)-dimensional dissipation nonlinear Schrodinger equation (DNLS) to describe envelope Rossby solitary waves under the influence of dissipation which propagate in a plane. Especially, the previous researches about envelope Rossby solitary waves were established in the zonal area and could not be applied directly to the spherical earth, while we adopt the plane polar coordinate and overcome the problem. By theoretical analyses, the conservation laws of (2+ 1)-dimensional envelope Rossby solitary waves as well as their variation under the influence of dissipation are studied. Finally, the one-soliton and two-soliton solutions of the (2+ 1)-dimensional NLS equation are obtained with the Hirota method. Based on these solutions, by virtue of the chirp concept from fiber soliton communication, the chirp effect of envelope Rossby solitary waves is discussed, and the related impact factors of the chirp effect are given.展开更多
In this paper, a further extended Jacobi elliptic function rationM expansion method is proposed for constructing new forms of exact solutions to nonlinear partial differential equations by making a more general transf...In this paper, a further extended Jacobi elliptic function rationM expansion method is proposed for constructing new forms of exact solutions to nonlinear partial differential equations by making a more general transformation. For illustration, we apply the method to (2+1)-dimensionM dispersive long wave equation and successfully obtain many new doubly periodic solutions. When the modulus m→1, these sohitions degenerate as soliton solutions. The method can be also applied to other nonlinear partial differential equations.展开更多
After generalizing the Clarkson-Kruskal direct similarity reduction ansatz, one can obtain various newtypes of reduction equations. Especially, some lower-dimensional turbulent systems or chaotic systems may be obtain...After generalizing the Clarkson-Kruskal direct similarity reduction ansatz, one can obtain various newtypes of reduction equations. Especially, some lower-dimensional turbulent systems or chaotic systems may be obtainedfrom the general form of the similarity reductions of a higher-dimensional Lax integrable model. Furthermore, anarbitrary three-order quasi-linear equation, which includes the Korteweg de-Vries Burgers equation and the generalLorenz equation as two special cases, has been obtained from the reductions of the (2+1)-dimensional dispersive longwave equation system. Some types of periodic and chaotic solutions of the system are also discussed.展开更多
A complete discrimination system for the fourth order polynomial is given. As an application, we have reduced a (1+1)-dimensional dispersive long wave equation with general coefficients to an elementary integral fo...A complete discrimination system for the fourth order polynomial is given. As an application, we have reduced a (1+1)-dimensional dispersive long wave equation with general coefficients to an elementary integral form and obtained its all possible exact travelling wave solutions including rational function type solutions, solitary wave solutions, triangle function type periodic solutions and Jacobian elliptic functions double periodic solutions. This method can be also applied to many other similar problems.展开更多
We give the bilinear form and n-soliton solutions of a(2+1)-dimensional [(2+1)-D] extended shallow water wave(eSWW) equation associated with two functions v and r by using Hirota bilinear method. We provide soli...We give the bilinear form and n-soliton solutions of a(2+1)-dimensional [(2+1)-D] extended shallow water wave(eSWW) equation associated with two functions v and r by using Hirota bilinear method. We provide solitons, breathers,and hybrid solutions of them. Four cases of a crucial φ(y), which is an arbitrary real continuous function appeared in f of bilinear form, are selected by using Jacobi elliptic functions, which yield a periodic solution and three kinds of doubly localized dormion-type solution. The first order Jacobi-type solution travels parallelly along the x axis with the velocity(3k12+ α, 0) on(x, y)-plane. If φ(y) = sn(y, 3/10), it is a periodic solution. If φ(y) = cn(y, 1), it is a dormion-type-Ⅰ solutions which has a maximum(3/4)k1p1 and a minimum-(3/4)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1), we get a dormion-type-Ⅱ solution(26) which has only one extreme value-(3/2)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1/2)/(1 + y2), we get a dormion-type-Ⅲ solution(21) which shows very strong doubly localized feature on(x, y) plane. Moreover, several interesting patterns of the mixture of periodic and localized solutions are also given in graphic way.展开更多
In this paper, the new mapping approach and the new extended auxiliary equation approach were used to investigate the exact traveling wave solutions of (2 + 1)-dimensional time-fractional Zoomeron equation with the co...In this paper, the new mapping approach and the new extended auxiliary equation approach were used to investigate the exact traveling wave solutions of (2 + 1)-dimensional time-fractional Zoomeron equation with the conformable fractional derivative. As a result, the singular soliton solutions, kink and anti-kink soliton solutions, periodic function soliton solutions, Jacobi elliptic function solutions and hyperbolic function solutions of (2 + 1)-dimensional time-fractional Zoomeron equation were obtained. Finally, the 3D and 2D graphs of some solutions were drawn by setting the suitable values of parameters with Maple, and analyze the dynamic behaviors of the solutions.展开更多
In this paper,the bifurcation of solitary,kink,anti-kink,and periodic waves for (2+1)-dimension nonlinear dispersive long wave equation is studied by using the bifurcation theory of planar dynamical systems.Bifurca...In this paper,the bifurcation of solitary,kink,anti-kink,and periodic waves for (2+1)-dimension nonlinear dispersive long wave equation is studied by using the bifurcation theory of planar dynamical systems.Bifurcation parameter sets are shown,and under various parameter conditions,all exact explicit formulas of solitary travelling wave solutions and kink travelling wave solutions and periodic travelling wave solutions are listed.展开更多
This article investigates the Hirota-Satsuma-Ito equation with variable coefficient using the Hirota bilinear method and the long wave limit method.The equation is proved to be Painlevé integrable by Painlevé...This article investigates the Hirota-Satsuma-Ito equation with variable coefficient using the Hirota bilinear method and the long wave limit method.The equation is proved to be Painlevé integrable by Painlevé analysis.On the basis of the bilinear form,the forms of two-soliton solutions,three-soliton solutions,and four-soliton solutions are studied specifically.The appropriate parameter values are chosen and the corresponding figures are presented.The breather waves solutions,lump solutions,periodic solutions and the interaction of breather waves solutions and soliton solutions,etc.are given.In addition,we also analyze the different effects of the parameters on the figures.The figures of the same set of parameters in different planes are presented to describe the dynamical behavior of solutions.These are important for describing water waves in nature.展开更多
In this work, by means of a generalized method and symbolic computation, we extend the Jacobi elliptic function rational expansion method to uniformly construct a series of stochastic wave solutions for stochastic evo...In this work, by means of a generalized method and symbolic computation, we extend the Jacobi elliptic function rational expansion method to uniformly construct a series of stochastic wave solutions for stochastic evolution equations. To illustrate the effectiveness of our method, we take the (2+ 1)-dimensional stochastic dispersive long wave system as an example. We not only have obtained some known solutions, but also have constructed some new rational formal stochastic Jacobi elliptic function solutions.展开更多
The (2 + 1)-dimensional fifth-order KdV equation is an important higher-dimensional and higher-order extension of the famous KdV equation in fluid dynamics. In this paper, by constructing new test functions, we invest...The (2 + 1)-dimensional fifth-order KdV equation is an important higher-dimensional and higher-order extension of the famous KdV equation in fluid dynamics. In this paper, by constructing new test functions, we investigate the periodic solitary wave solutions for the (2 + 1)-dimensional fifth-order KdV equation by virtue of the Hirota bilinear form. Several novel analytic solutions for such a model are obtained and verified with the help of symbolic computation.展开更多
In this paper, we investigate the periodic wave solutions and solitary wave solutions of a (2+1)-dimensional Korteweg-de Vries (KDV) equation</span><span style="font-size:10pt;font-family:"">...In this paper, we investigate the periodic wave solutions and solitary wave solutions of a (2+1)-dimensional Korteweg-de Vries (KDV) equation</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">by applying Jacobi elliptic function expansion method. Abundant types of Jacobi elliptic function solutions are obtained by choosing different </span><span style="font-size:10.0pt;font-family:"">coefficient</span><span style="font-size:10.0pt;font-family:"">s</span><span style="font-size:10pt;font-family:""> <i>p</i>, <i>q</i> and <i>r</i> in the</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">elliptic equation. Then these solutions are</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">coupled into an auxiliary equation</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">and substituted into the (2+1)-dimensional KDV equation. As <span>a result,</span></span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">a large number of complex Jacobi elliptic function solutions are ob</span><span style="font-size:10pt;font-family:"">tained, and many of them have not been found in other documents. As</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10.0pt;font-family:""><span></span></span><span style="font-size:10pt;font-family:"">, some complex solitary solutions are also obtained correspondingly.</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">These solutions that we obtained in this paper will be helpful to understand the physics of the (2+1)-dimensional KDV equation.展开更多
Recently, a new (2+1)-dimensional shallow water wave system, the (2+1)-dlmenslonal displacement shallow water wave system (2DDSWWS), was constructed by applying the variational principle of the analytic mechan...Recently, a new (2+1)-dimensional shallow water wave system, the (2+1)-dlmenslonal displacement shallow water wave system (2DDSWWS), was constructed by applying the variational principle of the analytic mechanics in the Lagrange coordinates. The disadvantage is that fluid viscidity is not considered in the 2DDSWWS, which is the same as the famous Kadomtsev-Petviashvili equation and Korteweg-de Vries equation. Applying dimensional analysis, we modify the 2DDSWWS and add the term related to the fluid viscidity to the 2DDSWWS. The approximate similarity solutions of the modified 2DDSWWS (M2DDSWWS) is studied and four similarity solutions are obtained. For the perfect fluids, the coefficient of kinematic viscosity is zero, then the M2DDSWWS will degenerate to the 2DDSWWS.展开更多
By using the extended F-expansion method, the exact solutions,including periodic wave solutions expressed by Jacobi elliptic functions, for (2+1)-dimensional nonlinear Schrdinger equation are derived. In the limit c...By using the extended F-expansion method, the exact solutions,including periodic wave solutions expressed by Jacobi elliptic functions, for (2+1)-dimensional nonlinear Schrdinger equation are derived. In the limit cases, the solitary wave solutions and the other type of traveling wave solutions for the system are obtained.展开更多
In this paper,the truncated Painlev′e analysis,nonlocal symmetry,Bcklund transformation of the(2+1)-dimensional modified Bogoyavlenskii–Schiff equation are presented.Then the nonlocal symmetry is localized to the...In this paper,the truncated Painlev′e analysis,nonlocal symmetry,Bcklund transformation of the(2+1)-dimensional modified Bogoyavlenskii–Schiff equation are presented.Then the nonlocal symmetry is localized to the corresponding nonlocal group by the prolonged system.In addition,the(2+1)-dimensional modified Bogoyavlenskii–Schiff is proved consistent Riccati expansion(CRE) solvable.As a result,the soliton–cnoidal wave interaction solutions of the equation are explicitly given,which are difficult to find by other traditional methods.Moreover figures are given out to show the properties of the explicit analytic interaction solutions.展开更多
To transform the exponential traveling wave solutions to bilinear differential equations, a sufficient and necessary condition is proposed. Motivated by the condition, we extend the results to the(2+1)-dimensional Kad...To transform the exponential traveling wave solutions to bilinear differential equations, a sufficient and necessary condition is proposed. Motivated by the condition, we extend the results to the(2+1)-dimensional Kadomtsev–Petviashvili(KP) equation, the(3+1)-dimensional generalized Kadomtsev–Petviashvili(g-KP) equation, and the B-type Kadomtsev–Petviashvili(BKP) equation. Aa a result, we obtain some new resonant multiple wave solutions through the parameterization for wave numbers and frequencies via some linear combinations of exponential traveling waves. Finally, these new resonant type solutions can be displayed in graphs to illustrate the resonant behaviors of multiple wave solutions.展开更多
基金Project supported by the Anhui Key Laboratory of Information Materials and Devices (Anhui University),China
文摘In this paper, we make use of the auxiliary equation and the expanded mapping methods to find the new exact periodic solutions for (2+1)-dimensional dispersive long wave equations in mathematical physics, which are expressed by Jacobi elliptic functions, and obtain some new solitary wave solutions (m → 1). This method can also be used to explore new periodic wave solutions for other nonlinear evolution equations.
文摘For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.
基金supported by the Scientific Research Foundation of Beijing Information Science and Technology UniversityScientific Creative Platform Foundation of Beijing Municipal Commission of Education
文摘With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transformation, improved mapping approach, and variable separation approach, among which there are rational solitary wave solutions, periodic wave solutions and rational wave solutions.
基金The project supported in part by National Natural Science Foundation of China under Grant No. 10272071 and the Science Research Foundation of Huzhou University under Grant No. KX21025
文摘A new generalized extended F-expansion method is presented for finding periodic wave solutions of nonlinear evolution equations in mathematical physics. As an application of this method, we study the (2+1)-dimensional dispersive long wave equation. With the aid of computerized symbolic computation, a number of doubly periodic wave solutions expressed by various Jacobi elliptic functions are obtained. In the limit cases, the solitary wave solutions are derived as well.
基金supported by the National Natural Science Foundation of China(Grant No.41406018)
文摘In the past few decades, the (1 + 1)-dimensional nonlinear Schr6dinger (NLS) equation had been derived for envelope Rossby solitary waves in a line by employing the perturbation expansion method. But, with the development of theory, we note that the (1+1)-dimensional model cannot reflect the evolution of envelope Rossby solitary waves in a plane. In this paper, by constructing a new (2+1)-dimensional multiscale transform, we derive the (2+1)-dimensional dissipation nonlinear Schrodinger equation (DNLS) to describe envelope Rossby solitary waves under the influence of dissipation which propagate in a plane. Especially, the previous researches about envelope Rossby solitary waves were established in the zonal area and could not be applied directly to the spherical earth, while we adopt the plane polar coordinate and overcome the problem. By theoretical analyses, the conservation laws of (2+ 1)-dimensional envelope Rossby solitary waves as well as their variation under the influence of dissipation are studied. Finally, the one-soliton and two-soliton solutions of the (2+ 1)-dimensional NLS equation are obtained with the Hirota method. Based on these solutions, by virtue of the chirp concept from fiber soliton communication, the chirp effect of envelope Rossby solitary waves is discussed, and the related impact factors of the chirp effect are given.
基金The project partially supported by the State Key Basic Research Program of China under Grant No. 2004 CB 318000
文摘In this paper, a further extended Jacobi elliptic function rationM expansion method is proposed for constructing new forms of exact solutions to nonlinear partial differential equations by making a more general transformation. For illustration, we apply the method to (2+1)-dimensionM dispersive long wave equation and successfully obtain many new doubly periodic solutions. When the modulus m→1, these sohitions degenerate as soliton solutions. The method can be also applied to other nonlinear partial differential equations.
基金国家杰出青年科学基金,the Research Fund for Doctoral Program of HigherEducation of China,国家自然科学基金
文摘After generalizing the Clarkson-Kruskal direct similarity reduction ansatz, one can obtain various newtypes of reduction equations. Especially, some lower-dimensional turbulent systems or chaotic systems may be obtainedfrom the general form of the similarity reductions of a higher-dimensional Lax integrable model. Furthermore, anarbitrary three-order quasi-linear equation, which includes the Korteweg de-Vries Burgers equation and the generalLorenz equation as two special cases, has been obtained from the reductions of the (2+1)-dimensional dispersive longwave equation system. Some types of periodic and chaotic solutions of the system are also discussed.
文摘A complete discrimination system for the fourth order polynomial is given. As an application, we have reduced a (1+1)-dimensional dispersive long wave equation with general coefficients to an elementary integral form and obtained its all possible exact travelling wave solutions including rational function type solutions, solitary wave solutions, triangle function type periodic solutions and Jacobian elliptic functions double periodic solutions. This method can be also applied to many other similar problems.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11671219 and 11871446)
文摘We give the bilinear form and n-soliton solutions of a(2+1)-dimensional [(2+1)-D] extended shallow water wave(eSWW) equation associated with two functions v and r by using Hirota bilinear method. We provide solitons, breathers,and hybrid solutions of them. Four cases of a crucial φ(y), which is an arbitrary real continuous function appeared in f of bilinear form, are selected by using Jacobi elliptic functions, which yield a periodic solution and three kinds of doubly localized dormion-type solution. The first order Jacobi-type solution travels parallelly along the x axis with the velocity(3k12+ α, 0) on(x, y)-plane. If φ(y) = sn(y, 3/10), it is a periodic solution. If φ(y) = cn(y, 1), it is a dormion-type-Ⅰ solutions which has a maximum(3/4)k1p1 and a minimum-(3/4)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1), we get a dormion-type-Ⅱ solution(26) which has only one extreme value-(3/2)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1/2)/(1 + y2), we get a dormion-type-Ⅲ solution(21) which shows very strong doubly localized feature on(x, y) plane. Moreover, several interesting patterns of the mixture of periodic and localized solutions are also given in graphic way.
文摘In this paper, the new mapping approach and the new extended auxiliary equation approach were used to investigate the exact traveling wave solutions of (2 + 1)-dimensional time-fractional Zoomeron equation with the conformable fractional derivative. As a result, the singular soliton solutions, kink and anti-kink soliton solutions, periodic function soliton solutions, Jacobi elliptic function solutions and hyperbolic function solutions of (2 + 1)-dimensional time-fractional Zoomeron equation were obtained. Finally, the 3D and 2D graphs of some solutions were drawn by setting the suitable values of parameters with Maple, and analyze the dynamic behaviors of the solutions.
基金Supported by the National Natural Science Foundation of China (10871206)Program for Excellent Talents in Guangxi Higher Education Institutions
文摘In this paper,the bifurcation of solitary,kink,anti-kink,and periodic waves for (2+1)-dimension nonlinear dispersive long wave equation is studied by using the bifurcation theory of planar dynamical systems.Bifurcation parameter sets are shown,and under various parameter conditions,all exact explicit formulas of solitary travelling wave solutions and kink travelling wave solutions and periodic travelling wave solutions are listed.
基金This work was supported by the National Natural Science Foundation of China(Grant No.11505090)Research Award Foundation for Outstanding Young Scientists of Shandong Province(Grant No.BS2015SF009)+2 种基金the Doctoral Foundation of Liaocheng University(Grant No.318051413)Liaocheng University Level Science and Technology Research Fund(Grant No.318012018)Discipline with Strong Characteristics of Liaocheng University–Intelligent Science and Technology(Grant No.319462208).
文摘This article investigates the Hirota-Satsuma-Ito equation with variable coefficient using the Hirota bilinear method and the long wave limit method.The equation is proved to be Painlevé integrable by Painlevé analysis.On the basis of the bilinear form,the forms of two-soliton solutions,three-soliton solutions,and four-soliton solutions are studied specifically.The appropriate parameter values are chosen and the corresponding figures are presented.The breather waves solutions,lump solutions,periodic solutions and the interaction of breather waves solutions and soliton solutions,etc.are given.In addition,we also analyze the different effects of the parameters on the figures.The figures of the same set of parameters in different planes are presented to describe the dynamical behavior of solutions.These are important for describing water waves in nature.
基金The project partially supported by the State Key Basic Research Program of China under Grant No. 2004CB318000
文摘In this work, by means of a generalized method and symbolic computation, we extend the Jacobi elliptic function rational expansion method to uniformly construct a series of stochastic wave solutions for stochastic evolution equations. To illustrate the effectiveness of our method, we take the (2+ 1)-dimensional stochastic dispersive long wave system as an example. We not only have obtained some known solutions, but also have constructed some new rational formal stochastic Jacobi elliptic function solutions.
文摘The (2 + 1)-dimensional fifth-order KdV equation is an important higher-dimensional and higher-order extension of the famous KdV equation in fluid dynamics. In this paper, by constructing new test functions, we investigate the periodic solitary wave solutions for the (2 + 1)-dimensional fifth-order KdV equation by virtue of the Hirota bilinear form. Several novel analytic solutions for such a model are obtained and verified with the help of symbolic computation.
文摘In this paper, we investigate the periodic wave solutions and solitary wave solutions of a (2+1)-dimensional Korteweg-de Vries (KDV) equation</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">by applying Jacobi elliptic function expansion method. Abundant types of Jacobi elliptic function solutions are obtained by choosing different </span><span style="font-size:10.0pt;font-family:"">coefficient</span><span style="font-size:10.0pt;font-family:"">s</span><span style="font-size:10pt;font-family:""> <i>p</i>, <i>q</i> and <i>r</i> in the</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">elliptic equation. Then these solutions are</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">coupled into an auxiliary equation</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">and substituted into the (2+1)-dimensional KDV equation. As <span>a result,</span></span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">a large number of complex Jacobi elliptic function solutions are ob</span><span style="font-size:10pt;font-family:"">tained, and many of them have not been found in other documents. As</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10.0pt;font-family:""><span></span></span><span style="font-size:10pt;font-family:"">, some complex solitary solutions are also obtained correspondingly.</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">These solutions that we obtained in this paper will be helpful to understand the physics of the (2+1)-dimensional KDV equation.
基金Project supported by the Natural Science Foundation of Guangdong Province of China (Grant No.10452840301004616)the National Natural Science Foundation of China (Grant No.61001018)the Scientific Research Foundation for the Doctors of University of Electronic Science and Technology of China Zhongshan Institute (Grant No.408YKQ09)
文摘Recently, a new (2+1)-dimensional shallow water wave system, the (2+1)-dlmenslonal displacement shallow water wave system (2DDSWWS), was constructed by applying the variational principle of the analytic mechanics in the Lagrange coordinates. The disadvantage is that fluid viscidity is not considered in the 2DDSWWS, which is the same as the famous Kadomtsev-Petviashvili equation and Korteweg-de Vries equation. Applying dimensional analysis, we modify the 2DDSWWS and add the term related to the fluid viscidity to the 2DDSWWS. The approximate similarity solutions of the modified 2DDSWWS (M2DDSWWS) is studied and four similarity solutions are obtained. For the perfect fluids, the coefficient of kinematic viscosity is zero, then the M2DDSWWS will degenerate to the 2DDSWWS.
文摘By using the extended F-expansion method, the exact solutions,including periodic wave solutions expressed by Jacobi elliptic functions, for (2+1)-dimensional nonlinear Schrdinger equation are derived. In the limit cases, the solitary wave solutions and the other type of traveling wave solutions for the system are obtained.
基金Project supported by the Global Change Research Program of China(Grant No.2015CB953904)the National Natural Science Foundation of China(Grant Nos.11275072 and 11435005)+2 种基金the Doctoral Program of Higher Education of China(Grant No.20120076110024)the Network Information Physics Calculation of Basic Research Innovation Research Group of China(Grant No.61321064)the Fund from Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things(Grant No.ZF1213)
文摘In this paper,the truncated Painlev′e analysis,nonlocal symmetry,Bcklund transformation of the(2+1)-dimensional modified Bogoyavlenskii–Schiff equation are presented.Then the nonlocal symmetry is localized to the corresponding nonlocal group by the prolonged system.In addition,the(2+1)-dimensional modified Bogoyavlenskii–Schiff is proved consistent Riccati expansion(CRE) solvable.As a result,the soliton–cnoidal wave interaction solutions of the equation are explicitly given,which are difficult to find by other traditional methods.Moreover figures are given out to show the properties of the explicit analytic interaction solutions.
基金Project supported by the Yue-Qi Scholar of the China University of Mining and Technology(Grant No.102504180004)the 333 Project of Jiangsu Province,China(Grant No.BRA2018320)
文摘To transform the exponential traveling wave solutions to bilinear differential equations, a sufficient and necessary condition is proposed. Motivated by the condition, we extend the results to the(2+1)-dimensional Kadomtsev–Petviashvili(KP) equation, the(3+1)-dimensional generalized Kadomtsev–Petviashvili(g-KP) equation, and the B-type Kadomtsev–Petviashvili(BKP) equation. Aa a result, we obtain some new resonant multiple wave solutions through the parameterization for wave numbers and frequencies via some linear combinations of exponential traveling waves. Finally, these new resonant type solutions can be displayed in graphs to illustrate the resonant behaviors of multiple wave solutions.