A wear-resistant (Cr, Fe)7C3/γ-Fe in situ ceramal composite coating was fabricated on the substrate of 0.45wt%C carbon steel by a plasma-transferred arc cladding process using the Fe-Cr-C elemental powder blends. T...A wear-resistant (Cr, Fe)7C3/γ-Fe in situ ceramal composite coating was fabricated on the substrate of 0.45wt%C carbon steel by a plasma-transferred arc cladding process using the Fe-Cr-C elemental powder blends. The microstructure, microhardness, and dry-sliding wear resistance of the coating were evaluated. The results indicate that the microstructure of the coating, which was composed of (Cr, Fe)7C3 primary phase uniformly distributed in the γ-Fe, and the (Cr, Fe)7C3 eutectic matrix was metallurgically bonded to the 0.45wt%C carbon steel substrate. From substrate to coating, the microstructure of the coating exhibited an evident epitaxial growth character. The coating, indehiscent and tack-free, had high hardness and appropriate gradient. It had excellent wear resistance under the dry sliding wear test condition.展开更多
The effects of the Cr3C2 content and wheel speed on the amorphization behavior of the melt-spun SmCo7-x(Cr3C2)x (x=0.10-0.25) alloys were studied systematically by X-ray diffraction analysis (XRD), differential ...The effects of the Cr3C2 content and wheel speed on the amorphization behavior of the melt-spun SmCo7-x(Cr3C2)x (x=0.10-0.25) alloys were studied systematically by X-ray diffraction analysis (XRD), differential scanning calorimetry (DSC) and magnetic measurements. The ribbon melt-spun at lower wheel speed (20 m/s) has composite structure composed of mostly SmCo7 and a small amount of Sm2Co17R. The grain size of SmCo7 phase decreases with the increase of Cr3C2 content. With the increase of wheel speed, the XRD peaks become lower and accompanied with a broad increase in backgrounds, indicating a considerable decrease in the grain size of the SmCo7 phase. When the wheel speed increases to 40 m/s, SmCo7-x(Cr3C2)x alloys can be obtained in the amorphous state for 0.15≤x≤0.25 with intrinsic coercive Hci of 0.004-0.007 T. The DSC analysis reveals that SmCo7 phase firstly precipitates from the amorphous matrix at 650 °C, followed by the crystallization of Sm2Co17 phase at 770 °C.展开更多
A wear resistant (Cr, Fe)7C3/γ-Fe ceramalcomposite coating wasfabricatedon substrate of a 0.45% C carbon steel by plasma transferred arc (PTA) cladding process using the Fe-Cr-C elemental powder blends. The micro...A wear resistant (Cr, Fe)7C3/γ-Fe ceramalcomposite coating wasfabricatedon substrate of a 0.45% C carbon steel by plasma transferred arc (PTA) cladding process using the Fe-Cr-C elemental powder blends. The microstructure, microhardness and dry sliding wear resistance of the coating were evaluated. Results indicate that the plasma transferred arc clad ceramal composite coating has a rapidly solidified microstructure consisting of blocky primary (Cr, Fe)7C3 and the interblocky ( Cr, Fe)7C3/γ-Fe eutectics and is metallurgically bonded to the 0.45%C carbon steel substrate. The ceramal composite coating has high hardness and excellent wear resistance under dry sliding wear test condition.展开更多
The behaviour of hydrogen permeation and diffusion in amorphous alloy Ni68Cr7Si8B14Fe3 hasbeen investigated by an ultrahigh vacuum gas permeation technique. A comparison experimentwas carried out between the as-quench...The behaviour of hydrogen permeation and diffusion in amorphous alloy Ni68Cr7Si8B14Fe3 hasbeen investigated by an ultrahigh vacuum gas permeation technique. A comparison experimentwas carried out between the as-quenched and annealed States (400℃/2h) of the amorphousalloy. The results show that, for both states of the amorphous alloy in the temperature rangeof 200~350℃, the diffusivity and permeability of hydrogen are in agreement with Arrheniusrelationship, there does not exist H-trapping effect, and the activation energies of diffusion andpermeation almost keep the same.展开更多
文摘A wear-resistant (Cr, Fe)7C3/γ-Fe in situ ceramal composite coating was fabricated on the substrate of 0.45wt%C carbon steel by a plasma-transferred arc cladding process using the Fe-Cr-C elemental powder blends. The microstructure, microhardness, and dry-sliding wear resistance of the coating were evaluated. The results indicate that the microstructure of the coating, which was composed of (Cr, Fe)7C3 primary phase uniformly distributed in the γ-Fe, and the (Cr, Fe)7C3 eutectic matrix was metallurgically bonded to the 0.45wt%C carbon steel substrate. From substrate to coating, the microstructure of the coating exhibited an evident epitaxial growth character. The coating, indehiscent and tack-free, had high hardness and appropriate gradient. It had excellent wear resistance under the dry sliding wear test condition.
基金Project (51104188) supported by the National Natural Science Foundation for Young Scholars of China
文摘The effects of the Cr3C2 content and wheel speed on the amorphization behavior of the melt-spun SmCo7-x(Cr3C2)x (x=0.10-0.25) alloys were studied systematically by X-ray diffraction analysis (XRD), differential scanning calorimetry (DSC) and magnetic measurements. The ribbon melt-spun at lower wheel speed (20 m/s) has composite structure composed of mostly SmCo7 and a small amount of Sm2Co17R. The grain size of SmCo7 phase decreases with the increase of Cr3C2 content. With the increase of wheel speed, the XRD peaks become lower and accompanied with a broad increase in backgrounds, indicating a considerable decrease in the grain size of the SmCo7 phase. When the wheel speed increases to 40 m/s, SmCo7-x(Cr3C2)x alloys can be obtained in the amorphous state for 0.15≤x≤0.25 with intrinsic coercive Hci of 0.004-0.007 T. The DSC analysis reveals that SmCo7 phase firstly precipitates from the amorphous matrix at 650 °C, followed by the crystallization of Sm2Co17 phase at 770 °C.
文摘A wear resistant (Cr, Fe)7C3/γ-Fe ceramalcomposite coating wasfabricatedon substrate of a 0.45% C carbon steel by plasma transferred arc (PTA) cladding process using the Fe-Cr-C elemental powder blends. The microstructure, microhardness and dry sliding wear resistance of the coating were evaluated. Results indicate that the plasma transferred arc clad ceramal composite coating has a rapidly solidified microstructure consisting of blocky primary (Cr, Fe)7C3 and the interblocky ( Cr, Fe)7C3/γ-Fe eutectics and is metallurgically bonded to the 0.45%C carbon steel substrate. The ceramal composite coating has high hardness and excellent wear resistance under dry sliding wear test condition.
文摘The behaviour of hydrogen permeation and diffusion in amorphous alloy Ni68Cr7Si8B14Fe3 hasbeen investigated by an ultrahigh vacuum gas permeation technique. A comparison experimentwas carried out between the as-quenched and annealed States (400℃/2h) of the amorphousalloy. The results show that, for both states of the amorphous alloy in the temperature rangeof 200~350℃, the diffusivity and permeability of hydrogen are in agreement with Arrheniusrelationship, there does not exist H-trapping effect, and the activation energies of diffusion andpermeation almost keep the same.