The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the...The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the composite coatings were mainly investigated. The worn surface and cross section of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The results show that the composite coatings reveal good antifriction and wear resistance due to the synergic effect of graphite and SiC particles. The formation of graphite-rich mechanically mixed layer (GRMML) on the surface of Ni-P-Gr-SiC coating contributes to the good tribological behavior of the wear counterparts and SiC particles play a load bearing role in protecting GRMML from shearing easily.展开更多
Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribologi...Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribological performances of the composite coatings under dry condition were investigated in comparison with 45 steel and conventional Ni-P coating, Micrographs show that short MWNTs with uniform length and open tips were obtained through the wet-milling process. The results of wear test reveal that the Ni-P-MWNTs composite coatings posses much better friction reduction and anti-wear performances when compared with 45 steel and Ni-P coating. Within the MWNTs content range of 0.74%-1.97%, the friction coefficient and the volume wear rate of the composite coatings decrease gradually and reach the minimum values of 0.08 and 6.22x10-15 m3/(N.m), respectively. The excellent tribological performances of the composite coatings can be attributed to the introduction of MWNTs, which play both roles of reinforcements and solid lubricant during the wear process.展开更多
The addition of superelastic NiTi to electroless Ni-P coating has been found to toughen the otherwise brittle coatings in static loading conditions, though its effect on erosion behaviour has not yet been explored. In...The addition of superelastic NiTi to electroless Ni-P coating has been found to toughen the otherwise brittle coatings in static loading conditions, though its effect on erosion behaviour has not yet been explored. In the present study, spherical WC-Co erodent particles were used in single particle impact testing of Ni-P-nano-NiTi composite coatings on API X100 steel substrates at two average velocities—35 m/s and 52 m/s. Erosion tests were performed at impact angles of 30°, 45°, 60°, and 90°. The effect of NiTi concentration in the coating was also examined. Through examination of the impact craters and material response at various impact conditions, it was found that the presence of superelastic NiTi in the brittle Ni-P matrix hindered the propagation of cracks and provided a barrier to crack growth. The following toughening mechanisms were identified: crack bridging and deflection, micro-cracking, and transformation toughening.展开更多
基金Project (51204105) supported by the National Natural Science Foundation of ChinaProject (11ZR1418000) supported by the Shanghai Natural Science Foundation, China
文摘The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the composite coatings were mainly investigated. The worn surface and cross section of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The results show that the composite coatings reveal good antifriction and wear resistance due to the synergic effect of graphite and SiC particles. The formation of graphite-rich mechanically mixed layer (GRMML) on the surface of Ni-P-Gr-SiC coating contributes to the good tribological behavior of the wear counterparts and SiC particles play a load bearing role in protecting GRMML from shearing easily.
基金Project (JPPT-115-5-1759) supported by the National Defense Science and Technology Industry Committee of China Project (20090162120080) supported by Research Fund for the Doctoral Program of Higher Education of ChinaProject (2010FJ3012) supported by the Program of Science and Technology of Hunan Province, China
文摘Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribological performances of the composite coatings under dry condition were investigated in comparison with 45 steel and conventional Ni-P coating, Micrographs show that short MWNTs with uniform length and open tips were obtained through the wet-milling process. The results of wear test reveal that the Ni-P-MWNTs composite coatings posses much better friction reduction and anti-wear performances when compared with 45 steel and Ni-P coating. Within the MWNTs content range of 0.74%-1.97%, the friction coefficient and the volume wear rate of the composite coatings decrease gradually and reach the minimum values of 0.08 and 6.22x10-15 m3/(N.m), respectively. The excellent tribological performances of the composite coatings can be attributed to the introduction of MWNTs, which play both roles of reinforcements and solid lubricant during the wear process.
文摘The addition of superelastic NiTi to electroless Ni-P coating has been found to toughen the otherwise brittle coatings in static loading conditions, though its effect on erosion behaviour has not yet been explored. In the present study, spherical WC-Co erodent particles were used in single particle impact testing of Ni-P-nano-NiTi composite coatings on API X100 steel substrates at two average velocities—35 m/s and 52 m/s. Erosion tests were performed at impact angles of 30°, 45°, 60°, and 90°. The effect of NiTi concentration in the coating was also examined. Through examination of the impact craters and material response at various impact conditions, it was found that the presence of superelastic NiTi in the brittle Ni-P matrix hindered the propagation of cracks and provided a barrier to crack growth. The following toughening mechanisms were identified: crack bridging and deflection, micro-cracking, and transformation toughening.