期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effect of wear conditions on tribological properties of electrolessly-deposited Ni-P-Gr-SiC hybrid composite coating 被引量:2
1
作者 何美凤 胡文彬 +3 位作者 钟澄 翁俊飞 沈彬 仵亚婷 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2586-2592,共7页
The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the... The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the composite coatings were mainly investigated. The worn surface and cross section of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The results show that the composite coatings reveal good antifriction and wear resistance due to the synergic effect of graphite and SiC particles. The formation of graphite-rich mechanically mixed layer (GRMML) on the surface of Ni-P-Gr-SiC coating contributes to the good tribological behavior of the wear counterparts and SiC particles play a load bearing role in protecting GRMML from shearing easily. 展开更多
关键词 electroless composite coating ni-p coating GRAPHITE SIC tribological property SELF-LUBRICATION synergic effect
下载PDF
Preparation and tribological performances of Ni-P-multi-walled carbon nanotubes composite coatings 被引量:7
2
作者 孟振强 李溪滨 +1 位作者 熊拥军 湛菁 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2719-2725,共7页
Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribologi... Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribological performances of the composite coatings under dry condition were investigated in comparison with 45 steel and conventional Ni-P coating, Micrographs show that short MWNTs with uniform length and open tips were obtained through the wet-milling process. The results of wear test reveal that the Ni-P-MWNTs composite coatings posses much better friction reduction and anti-wear performances when compared with 45 steel and Ni-P coating. Within the MWNTs content range of 0.74%-1.97%, the friction coefficient and the volume wear rate of the composite coatings decrease gradually and reach the minimum values of 0.08 and 6.22x10-15 m3/(N.m), respectively. The excellent tribological performances of the composite coatings can be attributed to the introduction of MWNTs, which play both roles of reinforcements and solid lubricant during the wear process. 展开更多
关键词 ni-p coating carbon nanotubes composite coating ball milling electroless plating SELF-LUBRICATION tribologicalperformance friction coefficient volume wear rate
下载PDF
Erosion and Toughening Mechanisms of Electroless Ni-P-Nano-NiTi Composite Coatings on API X100 Steel under Single Particle Impact 被引量:1
3
作者 Marissa MacLean Zoheir Farhat +3 位作者 George Jarjoura Eman Fayyad Aboubakr Abdullah Mohammad Hassan 《Journal of Surface Engineered Materials and Advanced Technology》 2019年第4期88-106,共19页
The addition of superelastic NiTi to electroless Ni-P coating has been found to toughen the otherwise brittle coatings in static loading conditions, though its effect on erosion behaviour has not yet been explored. In... The addition of superelastic NiTi to electroless Ni-P coating has been found to toughen the otherwise brittle coatings in static loading conditions, though its effect on erosion behaviour has not yet been explored. In the present study, spherical WC-Co erodent particles were used in single particle impact testing of Ni-P-nano-NiTi composite coatings on API X100 steel substrates at two average velocities—35 m/s and 52 m/s. Erosion tests were performed at impact angles of 30&deg;, 45&deg;, 60&deg;, and 90&deg;. The effect of NiTi concentration in the coating was also examined. Through examination of the impact craters and material response at various impact conditions, it was found that the presence of superelastic NiTi in the brittle Ni-P matrix hindered the propagation of cracks and provided a barrier to crack growth. The following toughening mechanisms were identified: crack bridging and deflection, micro-cracking, and transformation toughening. 展开更多
关键词 Electroless ni-p composite coating Superelastic NITI SINGLE Particle Impact EROSION Mechanisms TOUGHENING
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部