Si3N4-Si2N2O composites were fabricated with amorphous nano-sized silicon nitride powders by the liquid phase sintering ( LPS ). The Si2 N2O phase was generated by an in-situ reaction 2 Si3 N4 ( s ) + 1.5 02 ( g...Si3N4-Si2N2O composites were fabricated with amorphous nano-sized silicon nitride powders by the liquid phase sintering ( LPS ). The Si2 N2O phase was generated by an in-situ reaction 2 Si3 N4 ( s ) + 1.5 02 ( g ) = 3 Si2 N2O ( s ) + N2 ( g ) . The content of Si2 N2 O phase up to 60% in the volume was obtained at a sintering temperature of 1 650℃ and reduced when the sintering temperature increased or decreased, indicating the reaction is reversible. The mass loss, relative density and average grain size increased with increasing the sintering temperature. The average grain size was less than 500 nm when the sintering temperature was below 1 700 ℃. The sintering procedure contains a complex crystallization and a phase transition : amorphous silicon nitride→equiaxial α- Si3 N4→ equiaxial β- Si3 N4→ rod- like Si2 N2O→ needle- like β- Si3N4 . Small round-shaped β→ Si3 N4 particles were entrapped in the Si2 N2O grains and a high density of staking faults was situated in the middle of Si2 N2O grains at a sintering temperature of 1 650 ℃. The toughness inereased from 3.5 MPa·m^1/2 at 1 600 ℃ to 7.2 MPa· m^1/2 at 1 800 ℃ . The hardness was as high as 21.5 GPa (Vickers) at 1 600 ℃ .展开更多
Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships amon...Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships among the important electrical parameters of the samples with different thickness SiO2-Si3N4 films,such as threshold voltage,breakdown voltage,and on-state resistance in accumulated dose,are discussed.The total dose experiment results show that the breakdown voltage and the on-state resistance barely change with the accumulated dose.However,the relationships between the threshold voltages of the samples and the accumulated dose are more complex,and not only positively drift,but also negatively drift.At the end of the total dose experiment,we select the group of samples which have the smaller threshold voltage shift to carry out the single event effect studies.We find that the samples with appropriate thickness ratio SiO2-Si3N4 films have a good radiation-hardening ability.This method may be useful in solving both the SEGR and the total dose problems with the composite SiO2-Si3N4 films.展开更多
The β-Si3N4 whiskers (β-Si3N4w) reinforced A1 matrix com posites were first fabricated by hot pressing, then treated through hot extrusion. The microstructure characterization dem onstrated the preferred orientation...The β-Si3N4 whiskers (β-Si3N4w) reinforced A1 matrix com posites were first fabricated by hot pressing, then treated through hot extrusion. The microstructure characterization dem onstrated the preferred orientations of both β-Si3N4w and A1 grains in the as-extruded composites. It indicated th at β-Si3N4w were aligned along the extrusion direction and A1 grains exhibited a distinct <111>ai texture. The interface betw een β-Si3N4w and A1 was in a good bonding status without voids and reaction products. Effects of extrusion process on the mechanical properties of com posites were also investigated. The results indicated the extrusion process had a prom inent strengthening effect on the mechanical properties of composites. The maxim umyield strength and ultim ate tensile strength of com posites reached up to 170 and 289 MPa, respectively, accompanied by a 12.3% elongation at fracture w hen the w hisker fraction was 15 vol.%. This im provem ent was collectively attributed to the densification of composites, the strong interface, and the preferred orientation inside composites. The yield strength of the composites reinforced with 5 vol.%β-Si3N4w corresponded well w ith the theoretical value from different strengthening mechanisms.展开更多
基金Funded by the National Science Foundation of China ( No.50375037)
文摘Si3N4-Si2N2O composites were fabricated with amorphous nano-sized silicon nitride powders by the liquid phase sintering ( LPS ). The Si2 N2O phase was generated by an in-situ reaction 2 Si3 N4 ( s ) + 1.5 02 ( g ) = 3 Si2 N2O ( s ) + N2 ( g ) . The content of Si2 N2 O phase up to 60% in the volume was obtained at a sintering temperature of 1 650℃ and reduced when the sintering temperature increased or decreased, indicating the reaction is reversible. The mass loss, relative density and average grain size increased with increasing the sintering temperature. The average grain size was less than 500 nm when the sintering temperature was below 1 700 ℃. The sintering procedure contains a complex crystallization and a phase transition : amorphous silicon nitride→equiaxial α- Si3 N4→ equiaxial β- Si3 N4→ rod- like Si2 N2O→ needle- like β- Si3N4 . Small round-shaped β→ Si3 N4 particles were entrapped in the Si2 N2O grains and a high density of staking faults was situated in the middle of Si2 N2O grains at a sintering temperature of 1 650 ℃. The toughness inereased from 3.5 MPa·m^1/2 at 1 600 ℃ to 7.2 MPa· m^1/2 at 1 800 ℃ . The hardness was as high as 21.5 GPa (Vickers) at 1 600 ℃ .
文摘Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships among the important electrical parameters of the samples with different thickness SiO2-Si3N4 films,such as threshold voltage,breakdown voltage,and on-state resistance in accumulated dose,are discussed.The total dose experiment results show that the breakdown voltage and the on-state resistance barely change with the accumulated dose.However,the relationships between the threshold voltages of the samples and the accumulated dose are more complex,and not only positively drift,but also negatively drift.At the end of the total dose experiment,we select the group of samples which have the smaller threshold voltage shift to carry out the single event effect studies.We find that the samples with appropriate thickness ratio SiO2-Si3N4 films have a good radiation-hardening ability.This method may be useful in solving both the SEGR and the total dose problems with the composite SiO2-Si3N4 films.
基金supported by National Key R&D Program of China (Nos. 2017YFB0406200, 2017YFB0703200, and 2017YFB0310400)the National Natural Science Foundation of China (No. 51501215), Shanghai Sailing Program (No. 16YF1412900)+1 种基金Science Foundation for Youth Scholar of State Key Laboratory of High Performance Ceramics and Superfine Microstructures (No. SKL201701)State Key Laboratory of New Ceramic and Fine Processing Tsinghua University (No. KF201806)
文摘The β-Si3N4 whiskers (β-Si3N4w) reinforced A1 matrix com posites were first fabricated by hot pressing, then treated through hot extrusion. The microstructure characterization dem onstrated the preferred orientations of both β-Si3N4w and A1 grains in the as-extruded composites. It indicated th at β-Si3N4w were aligned along the extrusion direction and A1 grains exhibited a distinct <111>ai texture. The interface betw een β-Si3N4w and A1 was in a good bonding status without voids and reaction products. Effects of extrusion process on the mechanical properties of com posites were also investigated. The results indicated the extrusion process had a prom inent strengthening effect on the mechanical properties of composites. The maxim umyield strength and ultim ate tensile strength of com posites reached up to 170 and 289 MPa, respectively, accompanied by a 12.3% elongation at fracture w hen the w hisker fraction was 15 vol.%. This im provem ent was collectively attributed to the densification of composites, the strong interface, and the preferred orientation inside composites. The yield strength of the composites reinforced with 5 vol.%β-Si3N4w corresponded well w ith the theoretical value from different strengthening mechanisms.