Three-dimensional (3D) five-directional braided (SiO2)/SiO2 composites were prepared by silicasol-infiltration-sintering (SIS) method. The flexural properties and microstructures were studied. The flexural stren...Three-dimensional (3D) five-directional braided (SiO2)/SiO2 composites were prepared by silicasol-infiltration-sintering (SIS) method. The flexural properties and microstructures were studied. The flexural strength and flexural elastic modulus were found to be 73 MPa and 12 GPa, respectively. The results of stress vs deflection curve and SEM examinations revealed that the fracture mechanism of 3D, five-directional braided (SiO2)/SiO2 composite was a mixture mode of ductile and brittle. The ductile mode was attributed to the weak bonding strength of fiber/matrix at low temperature. The brittle fracture might be caused by the propagation of micro defect or crack, which existed in the as-prepared composites for the ten-cycle process.展开更多
The uniform transparent TiO2/SiO2 photocatalytic composite thin films are prepared by sol-gel method on the soda lime glass substrates, and characterized by UV-visible spectroscopy, X-ray diffraction (XRD), transmissi...The uniform transparent TiO2/SiO2 photocatalytic composite thin films are prepared by sol-gel method on the soda lime glass substrates, and characterized by UV-visible spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), BET surface area, FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). It was found that the addition of SiO2 to TiO2 thin films can suppress the grain growth of TiO2 crystal, increase the hydroxyl content on the surface of TiO2 films, lower the contact angle for water on TiO, films and enhance the hydrophilic property of TiO2 films. The super-hydrophilic TiO2/SiO2 photocatalytic composite thin films with the contact angle of 0((o) under bar) are obtained by the addition of 10%-20% SiO2 in mole fraction.展开更多
In this work,a sponge-like polysulfonamide(PSA)/SiO_2 composite membrane is unprecedentedly prepared by the phase inversion method,and successfully demonstrated as a novel separator of lithium-ion batteries(LIBs).Comp...In this work,a sponge-like polysulfonamide(PSA)/SiO_2 composite membrane is unprecedentedly prepared by the phase inversion method,and successfully demonstrated as a novel separator of lithium-ion batteries(LIBs).Compared to the commercial polypropylene(PP) separator,the sponge-like PSA/SiO_2 composite possesses better physical and electrochemical properties,such as higher porosity,ionic conductivity,thermal stability and flame retarding ability.The LiCoO_2/Li half-cells using the sponge-like composite separator demonstrate superior rate capability and cyclability over those using the commercial PP separator.Moreover,the sponge-like composite separator can ensure the normal operation of LiCoO_2/Li half-cell at an extremely high temperature of 90 °C,while the commercial PP separator cannot.All these encouraging results suggest that this phase inversion based sponge-like PSA/SiO_2 composite separator is really a promising separator for high performance LIBs.展开更多
Hollow B–SiO2@TiO2 composites were prepared by the wet chemical deposition method starting from TiCl4 and hollow B–SiO2 microspheres.TiO2 layers composed of anatase TiO2 nanoparticles were coated on the surfaces of ...Hollow B–SiO2@TiO2 composites were prepared by the wet chemical deposition method starting from TiCl4 and hollow B–SiO2 microspheres.TiO2 layers composed of anatase TiO2 nanoparticles were coated on the surfaces of the hollow B–SiO2 microspheres probably through the formation of Ti—O—Si and Ti—O—B bonds.A great number of—OH groups were also present at the TiO2 coating layers.The presence of Ti—O—Si bonds and Ti—O—B bonds resulted in the formation of defects in the TiO2 coating layers,which decreased the band gap of the TiO2 coating layers to ca.3.0 eV and endowed the TiO2 coating layers with visible light absorption performance.The buoyancy hollow B–SiO2@TiO2 composites exhibited high photocatalytic activities for the degradation of ammonia-nitrogen and green algae.The conversion of ammonia-nitrogen reached 65%when the degradation of ammonia-nitrogen(43 mg·L-1 at pH value of 8)was catalyzed by the B–SiO2@TiO2(100:10)composite under the simulated solar light irradiation at 35°C for 660 min.The green algae(5 mg·L-1)were almost completely degraded over the B–SiO@TiO2(100:20)photocatalyst under the visible light irradiation at 35°C for 510 min.展开更多
Supermacroporous composite cryogels embedded with SiO2 nanoparticles were prepared by radical cryogenic copolymerization of the reactive monomer mixture of acrylamide(AAm) and N,N-methylene-bis-acrylamide(MBAAm) c...Supermacroporous composite cryogels embedded with SiO2 nanoparticles were prepared by radical cryogenic copolymerization of the reactive monomer mixture of acrylamide(AAm) and N,N-methylene-bis-acrylamide(MBAAm) containing SiO2 nanoparticles(mass ratios of nanoparticles to the monomer AAm from 0.01 to 0.08) under the freezing-temperature variation condition in glass columns.The properties of these composite cryogels were measured.The height equivalent to theoretical plate(HETP) of the cryogel beds at different liquid flow rates was determined by residence time distribution(RTD) using tracer pulse-response method.The composite cryogel matrix embedded with the mass fraction of SiO2 nanoparticles of 0.02 presented the best properties and was employed in the following graft polymerization.Chromatographic process of lysozyme in the composite cryogel grafted with 2-acrylamido-2-methyl-1-propanesulfonic acid(AMPSA) was carried out to evaluate the protein breakthrough and elution characteristics.The chromatography can be carried out at relatively high superficial velocity,i.e.,15 cm·min-1,indicating the satisfactory mechanical strength due to the embedded nanoparticles.展开更多
(PEO)8LiClO4-SiO2 composite polymer electrolytes(CPEs)were prepared by in-situ reaction,in which ethyl-orthosilicate(TEOS)was catalyzed by HCl and NH3.H2O,respectively.The ionic conductivity,the contact angle and the ...(PEO)8LiClO4-SiO2 composite polymer electrolytes(CPEs)were prepared by in-situ reaction,in which ethyl-orthosilicate(TEOS)was catalyzed by HCl and NH3.H2O,respectively.The ionic conductivity,the contact angle and the morphology of inorganic particles in the CPEs were investigated by AC impedance spectra,contact angle method and TEM.The conductivities of acid-catalyzed CPE and alkali-catalyzed CPE are 2.2×10-5and 1.1×10-5S/cm respectively at 30℃.The results imply that the catalyst plays an important role in the structure of in-situ preparation of SiO2,and influences the surface energy and conductivity of CPE films directly.Meanwhile,the ionic conductivity is related to the surface energy.展开更多
Thioglycolic acid(TGA)-stabilized CdTe nanocrystals(NCs) were prepared with sodium tellurite as tellurium source,which avoids the cumbersome processes associated with H2Te or NaHTe sources.Fluorescent CdTe/SiO2 co...Thioglycolic acid(TGA)-stabilized CdTe nanocrystals(NCs) were prepared with sodium tellurite as tellurium source,which avoids the cumbersome processes associated with H2Te or NaHTe sources.Fluorescent CdTe/SiO2 composites were synthesized by a sol-gel method without the exchange of surface ligands.The phase structure of CdTe NCs was investigated by X-ray diffractometry.For comparison,some characterizations were done for both the CdTe NCs and the composites.CdTe NCs and CdTe/SiO2 composites were characterized with TEM,digital camera and fluorescence spectrophotometer.The stability of CdTe NCs and the composites were investigated in phosphate-buffered saline(PBS) buffer and the fluorescent properties of the composites were discussed in detail.展开更多
High surface area Nafion/SiO2 nanocomposites with nano-sized Nafion resin particles entrapped and dispersed within the highly porous silica matrix exhibited significantly enhanced activity, high selectivity and long-t...High surface area Nafion/SiO2 nanocomposites with nano-sized Nafion resin particles entrapped and dispersed within the highly porous silica matrix exhibited significantly enhanced activity, high selectivity and long-term stability for the alkylation of benzene with linear C9-C13 alkenes owing to the increased accessibility of Nafion resin-based acid sites to reactants.展开更多
The micro/nano-scale indentation tests were performed to explore the performance of bisphenol-α-glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) dental resin composites. The effect of the fi...The micro/nano-scale indentation tests were performed to explore the performance of bisphenol-α-glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) dental resin composites. The effect of the filling content of nano-SiO2 particles on the mechanical properties of the dental composites was studied as well. The experimental results showed that the incorporation of the nano-SiO2 particles at low concentrations (up to 10 wt.%) can apparently increase the hardness and elastic modulus of the dental rein composites. The plasticity index indicates a best elastic recovery capability at a proper amount (4 wt.%) of the nanoparticles. Combined with the infrared spectrum, the mechanical enhancement mechanisms of the dental resin composites were analyzed.展开更多
An ambient pressure synthesis of SiO2/TiO2 binary aerogel was prepared through the low-cost precursors of titanium tetrachloride(TiCl4) and sodium silicate(Na2O·nSiO2).After gelation,solvent exchange and surf...An ambient pressure synthesis of SiO2/TiO2 binary aerogel was prepared through the low-cost precursors of titanium tetrachloride(TiCl4) and sodium silicate(Na2O·nSiO2).After gelation,solvent exchange and surface modification were performed simultaneously and the modified gel was finally dried under ambient pressure.Microstructural analyses by transmission electron microscope(TEM) indicate that fabricated SiO2/TiO2 aerogel composite shows similar sponge-like nanostructure as silica aerogel,and the Brunauer-EmmettTeller(BET) analysis shows that the specific surface area of the composite reaches 605 m^2/g,and the average pore size is 9.7 nm.Such binary aerogel exhibits significant photocatalytic performance in this paper for treating model pollutant of methyl orange(MO),and the decolorizing efficiency of MO is detected as 84.9%after 210 mins exposure to UV light irradiation.Degraded gel suspends in the water so as to separate from solution for reuse,and after 4 times recycling,70%degradation efficiency can be easily reached when composite catalyzed system is exposed for 210 mins under UV irradiation.展开更多
The dissolution of alumina-based refractory ceramics in CaO-Al2O3-SiO_(2)slag melts was performed based on the in-situ observation system of an ultra-high-temperature laser confocal microscope,and the effect of the Ca...The dissolution of alumina-based refractory ceramics in CaO-Al2O3-SiO_(2)slag melts was performed based on the in-situ observation system of an ultra-high-temperature laser confocal microscope,and the effect of the CaO/SiO_(2)slag mass ratio(C/S ratio)on the dissolution rate of alumina-based refractory ceramics was investigated.The results indicate that the dissolution rate increases with an increase of the C/S ratio and is mainly controlled by diffusion.During the early stage of dissolution,for all C/S ratios,the dissolution process conforms to the classical invariant interface approximation model.During the later stage of dissolution,when the C/S ratio is≥6,the dissolution process is significantly different from the model above because of the formation of a thick interfacial layer,which can be explained by dissolution kinetics.展开更多
Silica( SiO_2) based aerogel/xerogel materials have been received ever-growing attentions for versatile applications. However,the widespread applications are narrowed by the inert properties,fragile and brittle nature...Silica( SiO_2) based aerogel/xerogel materials have been received ever-growing attentions for versatile applications. However,the widespread applications are narrowed by the inert properties,fragile and brittle natureof silica materials and cumbersome preparation processes. In this paper,titania( TiO_2) was introduced into SiO_2 matrix to form photocatalytic hybrid gels. The TiO_2/SiO_2 composites were then reinforced by the impregnation of various fibrillary reinforcements,such as glass,mullite mineral and ceramic fibers. The properties of the composites were studied systematically in terms of fiberstability,microstructure,chemical interaction and thermal conductivity. The final xerogel composites displayed improved monolithic geometry,satisfied thermal conductivity(0. 09-0. 25 W·m^(-1)·K^(-1)) and optimized photocatalytic performance(85% removal of model pollutant of methyl orange( Mo)),which could be expected to be a feasible route to multi-functional building facades in the future.展开更多
In the presence of Nafion/SiO2 nanocomposite catalyst, the benzylation of aromatic compounds with benzyl chloride proceeded to afford diphenylmethane derivatives in high yields. The catalyst showed high catalytic ac...In the presence of Nafion/SiO2 nanocomposite catalyst, the benzylation of aromatic compounds with benzyl chloride proceeded to afford diphenylmethane derivatives in high yields. The catalyst showed high catalytic activity not only for electron-rich aromatic compounds, but also for electron-poor aromatic compounds. Under identical conditions, the self-benzylation of benzyl chloride, and dibenzylation and/or multi-benzylation of aromatic compounds were negligible.展开更多
基金Funded by the Basic Research Project of Science and Technology of Jiangsu Province(No.BK2009002)the National Natural ScienceFoundation of China(No.61176062)the Fundamental Research Funds for the Central Universities(No.NS2013061)
文摘Three-dimensional (3D) five-directional braided (SiO2)/SiO2 composites were prepared by silicasol-infiltration-sintering (SIS) method. The flexural properties and microstructures were studied. The flexural strength and flexural elastic modulus were found to be 73 MPa and 12 GPa, respectively. The results of stress vs deflection curve and SEM examinations revealed that the fracture mechanism of 3D, five-directional braided (SiO2)/SiO2 composite was a mixture mode of ductile and brittle. The ductile mode was attributed to the weak bonding strength of fiber/matrix at low temperature. The brittle fracture might be caused by the propagation of micro defect or crack, which existed in the as-prepared composites for the ten-cycle process.
基金This work was financially supported by the Foundation for University Key Teachers by the Ministry of Education, theKey Resear
文摘The uniform transparent TiO2/SiO2 photocatalytic composite thin films are prepared by sol-gel method on the soda lime glass substrates, and characterized by UV-visible spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), BET surface area, FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). It was found that the addition of SiO2 to TiO2 thin films can suppress the grain growth of TiO2 crystal, increase the hydroxyl content on the surface of TiO2 films, lower the contact angle for water on TiO, films and enhance the hydrophilic property of TiO2 films. The super-hydrophilic TiO2/SiO2 photocatalytic composite thin films with the contact angle of 0((o) under bar) are obtained by the addition of 10%-20% SiO2 in mole fraction.
基金Supported by the funding from "135" Projects Fund of CAS-QIBEBT Director Innovation FoundationThink-Tank Mutual Fund of Qingdao Energy Storage Industry Scientific Research+3 种基金Qingdao Key Lab of Solar Energy Utilization and Energy Storage Technologythe Strategic Priority Research Program of the Chinese Academy of Sciences(XDA09010105)National Natural Science Foundation of China(51502319)Shandong Provincial Natural Science Foundation(ZR2016BQ18)
文摘In this work,a sponge-like polysulfonamide(PSA)/SiO_2 composite membrane is unprecedentedly prepared by the phase inversion method,and successfully demonstrated as a novel separator of lithium-ion batteries(LIBs).Compared to the commercial polypropylene(PP) separator,the sponge-like PSA/SiO_2 composite possesses better physical and electrochemical properties,such as higher porosity,ionic conductivity,thermal stability and flame retarding ability.The LiCoO_2/Li half-cells using the sponge-like composite separator demonstrate superior rate capability and cyclability over those using the commercial PP separator.Moreover,the sponge-like composite separator can ensure the normal operation of LiCoO_2/Li half-cell at an extremely high temperature of 90 °C,while the commercial PP separator cannot.All these encouraging results suggest that this phase inversion based sponge-like PSA/SiO_2 composite separator is really a promising separator for high performance LIBs.
基金Supported by the National Natural Science Foundation of China(21506078).
文摘Hollow B–SiO2@TiO2 composites were prepared by the wet chemical deposition method starting from TiCl4 and hollow B–SiO2 microspheres.TiO2 layers composed of anatase TiO2 nanoparticles were coated on the surfaces of the hollow B–SiO2 microspheres probably through the formation of Ti—O—Si and Ti—O—B bonds.A great number of—OH groups were also present at the TiO2 coating layers.The presence of Ti—O—Si bonds and Ti—O—B bonds resulted in the formation of defects in the TiO2 coating layers,which decreased the band gap of the TiO2 coating layers to ca.3.0 eV and endowed the TiO2 coating layers with visible light absorption performance.The buoyancy hollow B–SiO2@TiO2 composites exhibited high photocatalytic activities for the degradation of ammonia-nitrogen and green algae.The conversion of ammonia-nitrogen reached 65%when the degradation of ammonia-nitrogen(43 mg·L-1 at pH value of 8)was catalyzed by the B–SiO2@TiO2(100:10)composite under the simulated solar light irradiation at 35°C for 660 min.The green algae(5 mg·L-1)were almost completely degraded over the B–SiO@TiO2(100:20)photocatalyst under the visible light irradiation at 35°C for 510 min.
基金Supported by the National Natural Science Foundation of China(20876145) the Natural Science Foundation of Zhejiang Province(Y4080329)
文摘Supermacroporous composite cryogels embedded with SiO2 nanoparticles were prepared by radical cryogenic copolymerization of the reactive monomer mixture of acrylamide(AAm) and N,N-methylene-bis-acrylamide(MBAAm) containing SiO2 nanoparticles(mass ratios of nanoparticles to the monomer AAm from 0.01 to 0.08) under the freezing-temperature variation condition in glass columns.The properties of these composite cryogels were measured.The height equivalent to theoretical plate(HETP) of the cryogel beds at different liquid flow rates was determined by residence time distribution(RTD) using tracer pulse-response method.The composite cryogel matrix embedded with the mass fraction of SiO2 nanoparticles of 0.02 presented the best properties and was employed in the following graft polymerization.Chromatographic process of lysozyme in the composite cryogel grafted with 2-acrylamido-2-methyl-1-propanesulfonic acid(AMPSA) was carried out to evaluate the protein breakthrough and elution characteristics.The chromatography can be carried out at relatively high superficial velocity,i.e.,15 cm·min-1,indicating the satisfactory mechanical strength due to the embedded nanoparticles.
文摘(PEO)8LiClO4-SiO2 composite polymer electrolytes(CPEs)were prepared by in-situ reaction,in which ethyl-orthosilicate(TEOS)was catalyzed by HCl and NH3.H2O,respectively.The ionic conductivity,the contact angle and the morphology of inorganic particles in the CPEs were investigated by AC impedance spectra,contact angle method and TEM.The conductivities of acid-catalyzed CPE and alkali-catalyzed CPE are 2.2×10-5and 1.1×10-5S/cm respectively at 30℃.The results imply that the catalyst plays an important role in the structure of in-situ preparation of SiO2,and influences the surface energy and conductivity of CPE films directly.Meanwhile,the ionic conductivity is related to the surface energy.
文摘Thioglycolic acid(TGA)-stabilized CdTe nanocrystals(NCs) were prepared with sodium tellurite as tellurium source,which avoids the cumbersome processes associated with H2Te or NaHTe sources.Fluorescent CdTe/SiO2 composites were synthesized by a sol-gel method without the exchange of surface ligands.The phase structure of CdTe NCs was investigated by X-ray diffractometry.For comparison,some characterizations were done for both the CdTe NCs and the composites.CdTe NCs and CdTe/SiO2 composites were characterized with TEM,digital camera and fluorescence spectrophotometer.The stability of CdTe NCs and the composites were investigated in phosphate-buffered saline(PBS) buffer and the fluorescent properties of the composites were discussed in detail.
文摘High surface area Nafion/SiO2 nanocomposites with nano-sized Nafion resin particles entrapped and dispersed within the highly porous silica matrix exhibited significantly enhanced activity, high selectivity and long-term stability for the alkylation of benzene with linear C9-C13 alkenes owing to the increased accessibility of Nafion resin-based acid sites to reactants.
文摘The micro/nano-scale indentation tests were performed to explore the performance of bisphenol-α-glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) dental resin composites. The effect of the filling content of nano-SiO2 particles on the mechanical properties of the dental composites was studied as well. The experimental results showed that the incorporation of the nano-SiO2 particles at low concentrations (up to 10 wt.%) can apparently increase the hardness and elastic modulus of the dental rein composites. The plasticity index indicates a best elastic recovery capability at a proper amount (4 wt.%) of the nanoparticles. Combined with the infrared spectrum, the mechanical enhancement mechanisms of the dental resin composites were analyzed.
基金Funded by the National Natural Science Foundation of China(NSFC)(Nos.51278073,51308079 and 51408073)
文摘An ambient pressure synthesis of SiO2/TiO2 binary aerogel was prepared through the low-cost precursors of titanium tetrachloride(TiCl4) and sodium silicate(Na2O·nSiO2).After gelation,solvent exchange and surface modification were performed simultaneously and the modified gel was finally dried under ambient pressure.Microstructural analyses by transmission electron microscope(TEM) indicate that fabricated SiO2/TiO2 aerogel composite shows similar sponge-like nanostructure as silica aerogel,and the Brunauer-EmmettTeller(BET) analysis shows that the specific surface area of the composite reaches 605 m^2/g,and the average pore size is 9.7 nm.Such binary aerogel exhibits significant photocatalytic performance in this paper for treating model pollutant of methyl orange(MO),and the decolorizing efficiency of MO is detected as 84.9%after 210 mins exposure to UV light irradiation.Degraded gel suspends in the water so as to separate from solution for reuse,and after 4 times recycling,70%degradation efficiency can be easily reached when composite catalyzed system is exposed for 210 mins under UV irradiation.
基金supported by the National Natural Science Foundation of China(52272022)the Special Project of Central Government for Local Science and Technology Development of Hubei Province(2019ZYYD076)the Innovation and Entrepreneurship Fund of Wuhan University of Science and Technology(D202202171045002669).
文摘The dissolution of alumina-based refractory ceramics in CaO-Al2O3-SiO_(2)slag melts was performed based on the in-situ observation system of an ultra-high-temperature laser confocal microscope,and the effect of the CaO/SiO_(2)slag mass ratio(C/S ratio)on the dissolution rate of alumina-based refractory ceramics was investigated.The results indicate that the dissolution rate increases with an increase of the C/S ratio and is mainly controlled by diffusion.During the early stage of dissolution,for all C/S ratios,the dissolution process conforms to the classical invariant interface approximation model.During the later stage of dissolution,when the C/S ratio is≥6,the dissolution process is significantly different from the model above because of the formation of a thick interfacial layer,which can be explained by dissolution kinetics.
基金National Natural Science Foundations of China(Nos.51308079,51408073,51678080,51678081)
文摘Silica( SiO_2) based aerogel/xerogel materials have been received ever-growing attentions for versatile applications. However,the widespread applications are narrowed by the inert properties,fragile and brittle natureof silica materials and cumbersome preparation processes. In this paper,titania( TiO_2) was introduced into SiO_2 matrix to form photocatalytic hybrid gels. The TiO_2/SiO_2 composites were then reinforced by the impregnation of various fibrillary reinforcements,such as glass,mullite mineral and ceramic fibers. The properties of the composites were studied systematically in terms of fiberstability,microstructure,chemical interaction and thermal conductivity. The final xerogel composites displayed improved monolithic geometry,satisfied thermal conductivity(0. 09-0. 25 W·m^(-1)·K^(-1)) and optimized photocatalytic performance(85% removal of model pollutant of methyl orange( Mo)),which could be expected to be a feasible route to multi-functional building facades in the future.
文摘In the presence of Nafion/SiO2 nanocomposite catalyst, the benzylation of aromatic compounds with benzyl chloride proceeded to afford diphenylmethane derivatives in high yields. The catalyst showed high catalytic activity not only for electron-rich aromatic compounds, but also for electron-poor aromatic compounds. Under identical conditions, the self-benzylation of benzyl chloride, and dibenzylation and/or multi-benzylation of aromatic compounds were negligible.