The B4C/Mg composites fabricated by metal-assisted pressureless infiltration technique were used as experimental material, and the wear behavior and mechanism of this material were studied. A pin-on-disc apparatus was...The B4C/Mg composites fabricated by metal-assisted pressureless infiltration technique were used as experimental material, and the wear behavior and mechanism of this material were studied. A pin-on-disc apparatus was used to evaluate the wear behavior where loads of 20, 40, 60 and 80 N, and a sliding velocity of 250 r/min were exerted. The results show that B4C/Mg composites possess superior wear resistance than pure Mg under various applied loads, and the content of Ti, as infiltration inducer, has an influence on the wear resistance of B4C/Mg composites. The dominant wear mechanism for pure Mg is abrasion, while that for B4C/Mg composites under low loads is adhesion and delamination. Under high loads, the wear mechanism of B4C/Mg composites can be attributed to thermal softening and melting or plastic deformation.展开更多
This work aimed to fabricate B4C reinforced aluminum matrix composites via blended powder semisolid forming that is an implementation of the benefits of semisolid forming to the powder metallurgy. Al7075 elements were...This work aimed to fabricate B4C reinforced aluminum matrix composites via blended powder semisolid forming that is an implementation of the benefits of semisolid forming to the powder metallurgy. Al7075 elements were incrementally added to ethanol solution under mechanical mixing. Al7075 constituents and B4C particles were blended in a high energy ball mill. Cold compacted Al7075/B4C blends were pressed at semisolid state. The effects of the size of the matrix(20, 45 and 63 μm), reinforcing volume fraction(5%, 10% and 20%) and semisolid compaction pressure(50 and 100 MPa) on the morphology, microstructure, density, hardness, compression and bending strength were thoroughly analyzed. Experimental results revealed that the highest microstructural uniformity was achieved when large B4C particles(45 μm) were distributed within the small particles(20 μm) of the matrix phase. Composites with matrix particles larger than reinforcing phase indicated agglomerations in loadings more than 10%(volume fraction). Agglomerated regions resisted against penetration of the liquid phase to the pores and lowered the density and strength of these composites. Composites with 20 μm Al7075 and 20%(volume fraction) 45 μm B4C powder pressed under 100 MPa exhibited the highest values of hardness(HV 190) and compressive strength(336 MPa).展开更多
B4C/6061Al composites reinforced with nano-to micrometer-sized B4C particles were fabricated via powder metallurgy route consisting of spark plasma sintering(SPS)and hot extrusion and rolling(HER),followed by T6 treat...B4C/6061Al composites reinforced with nano-to micrometer-sized B4C particles were fabricated via powder metallurgy route consisting of spark plasma sintering(SPS)and hot extrusion and rolling(HER),followed by T6 treatment.The microstructural evolution and mechanical properties were investigated.Results showed that the status of B4C particles changed from a network after SPS to a dispersion distribution after HER.The substructured grains reached 66.5%owing to the pinning effect of nano-sized B4C,and the grain size was refined from 3.12μm to 1.56μm after HER.After T6 treatment,dispersed Mg_(2)Si precipitated phases formed,and the grain size increased to 1.87μm.Fine recrystallized grains around micro-sized B4C were smaller than those in the areas with uniform distribution of nano-sized B4C and Mg_(2)Si.The stress distributions of as-rolled and heated composites were similar,considering that the T6 heat treatment was only effective in eliminating the first internal stress.The Vickers,microhardness,and tensile strength of as-SPSed composites were greatly improved from HV 55.45,0.86 GPa,and 180 MPa to HV 77.51,1.08 GPa,and 310 MPa,respectively.Despite the precipitation strengthening,the corresponding values of as-heated composites decreased to HV 70.82,0.85 GPa,and 230 MPa owing to grain coarsening.展开更多
The present study aims to fabricate and evaluate the mechanical properties and wear behavior of Mg metal matrix composite,reinforced by 0,1.5,3,5 and 10 vol.%B4C microparticles.Mg−B4C samples were fabricated at 450℃ ...The present study aims to fabricate and evaluate the mechanical properties and wear behavior of Mg metal matrix composite,reinforced by 0,1.5,3,5 and 10 vol.%B4C microparticles.Mg−B4C samples were fabricated at 450℃ and under different loading rates by using split Hopkinson bar(SHB),drop hammer(DH)and Instron(QS)at strain rates of 1600,800 and 0.008 s–1,respectively.The mechanical properties including microhardness,quasi-static and dynamic compressive strengths and wear behavior of samples were experimentally investigated.The results show that,the hardness of SHB and DH samples is obtained to be 20.2%and 5.7%higher than that of the QS sample,respectively.The wear rate and wear mass loss of Mg–10.0%B4C samples fabricated by SHB were determined lower than those of the QS sample by nearly 33%and 39%,respectively.The quasi-static compressive strengths of Mg−5.0%B4C are improved by 39%,30%and 29%for the SHB,DH and QS samples,respectively,in comparison with the case of pure Mg.Furthermore,it is discovered that the dynamic compressive strength of samples is 51%−110%higher than their quasi-static value with respect to the B4C content.展开更多
Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) ...Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the morphology and composition of the films fabricated in the electrolytes with and without addition of Si C nanoparticles. Results show that Si C particles can be successfully incorporated into the oxide film during the anodizing process and preferentially concentrate within internal cavities and micro-cracks. The ball-on-disk sliding tests indicate that Si C-containing oxide films register much lower wear rate than the oxide films without Si C under dry sliding condition. Si C particles are likely to melt and then are oxidized by frictional heat during sliding tests. Potentiodynamic polarization behavior reveals that the anodized alloy with Si C nanoparticles results in a reduction in passive current density to about 1.54×10-8 A/cm2, which is more than two times lower than that of the Ti O2 film(3.73×10-8 A/cm2). The synthesized composite film has good anti-wear and anti-corrosion properties and the growth mechanism of nanocomposite film is also discussed.展开更多
The compressive properties of the aluminum matrix composite reinforced with 55% B4C (volume fraction) particles were characterized using Gleeble 3500 thermal-mechanical testing machine. The compressive stress--strai...The compressive properties of the aluminum matrix composite reinforced with 55% B4C (volume fraction) particles were characterized using Gleeble 3500 thermal-mechanical testing machine. The compressive stress--strain curves were obtained at the temperature ranging from 298 to 773 K and strain rate ranging from 1×10^(-3) to 5 s ^(-1). The results showed that the dynamic compressive strength decreased more slowly than the quasi-static compressive strength at elevated temperatures, which was attributed to the different failure modes of the composite under dynamic and quasi-static load. The strain rate sensitivity increased from 0.02 to 0.13 when the temperature increased from room temperature to 773 K, suggesting that the strain rate sensitivity of this type of composite is a function of temperature.展开更多
The B4C/2024Al composites were successfully produced by pressureless infiltration method, and the effects of heat treatment on phase content and mechanical properties were investigated by X-ray diffraction (XRD), sc...The B4C/2024Al composites were successfully produced by pressureless infiltration method, and the effects of heat treatment on phase content and mechanical properties were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and mechanical properties testing. The results show that phases of BnC/2024Al composites include B4C, Al, Al3BC, AlB2 and Al2Cu. The phase species remain unchanged; however, the phase content of the composites changes significantly after heat treatment at the temperature of 660, 700, 800 or 900 ℃ for 12, 24 or 36 h. It is found that the heat treatment results in not only considerable enhancement in hardness, but also reduction in bending strength of the composites. Heat treatment at 800 ℃ for 36 h does best to hardness of the composites, while at 700 ℃ for 36 h it is the most beneficial to their comprehensive mechanical properties.展开更多
Aluminum-matrix boron carbide (B4Cp/Al) is a kind of neutron absorbing material widely used in nuclear spent fuel storage. In order to improve the tensile property of B4Cp/Al composites, a new type of nano-Al2O3 parti...Aluminum-matrix boron carbide (B4Cp/Al) is a kind of neutron absorbing material widely used in nuclear spent fuel storage. In order to improve the tensile property of B4Cp/Al composites, a new type of nano-Al2O3 particle (Al2O3np) reinforced B4Cp/Al + Al2O3np composites were prepared by powder metallurgy method. The Monte Carlo particle transport program (MCNP) was used to determine the influence of Al2O3np on the thermal neutron absorptivity of composites. The universal material testing machine and scanning electron microscope (SEM) were used to study the mechanical properties, microstructure and fracture morphology of B4Cp/Al composites. The results indicated that the neutron absorption properties of B4Cp/Al composites were not affected by the addition of nano-Al2O3 particles in the range of 1 wt%-15 wt%. The addition of Al2O3np can obviously reduce the grain size of B4Cp/Al matrix metals thus improve the tensile strength of the composites. The addition threshold of Al2O3np is about 2.5 wt%. Both B4Cp and Al2O3np change the fracture characteristics of the composites from toughness to brittleness, and the latter is more important.展开更多
A356alloy was used as the base metal to produce boron carbide(B4C)/A356composites using friction stir processing(FSP).The microstructural and mechanical properties of B4C/A356composites were optimized using artificial...A356alloy was used as the base metal to produce boron carbide(B4C)/A356composites using friction stir processing(FSP).The microstructural and mechanical properties of B4C/A356composites were optimized using artificial neural network(ANN)and non-dominated sorting genetic algorithm-II(NSGA-II).Firstly,microstructural properties of the composites fabricated in different processing conditions were investigated.Results show that FSP parameters such as rotational speed,traverse speed and tool pin profile significantly affect the size of the primary silicon(Si)particles of the base metal,as well as the dispersion quality and volume fraction of reinforcing B4C particles in the composite layer.Higher rotational to traverse speeds ratio accompanied by threaded pin profile leads to better particles distribution,finer Si particles and smaller B4C agglomerations.Secondly,hardness and tensile tests were performed to study mechanical properties of the composites.FSP changes the fracture mechanism from brittle form in the as-received metal to very ductile form in the FSPed specimens.Then,a relation between the FSP parameters and microstructural and mechanical properties of the composites was established using ANN.A modified NSGA-II by incorporating diversity preserving mechanism called theεelimination algorithm was employed to obtain the Pareto-optimal set of FSP parameters.展开更多
Hardness, friction and wear characteristics of electrodeposited RE Ni W P B 4C PTFE composite coatings were studied, and the reason for these fine characteristics was explained in respect of structure. The results sho...Hardness, friction and wear characteristics of electrodeposited RE Ni W P B 4C PTFE composite coatings were studied, and the reason for these fine characteristics was explained in respect of structure. The results show that 1) the structure of RE Ni W P B 4C PTFE composite coatings experiences a transformation process from amorphous to mixture then to crystal as the heat treatment temperature rises; 2) incorporating of B 4C greatly increases the hardness of the coating; 3) the wear resistance of the coating is best with heat treatment for 1?h at 300?℃, which is greatly superior to that of the other traditional coatings.展开更多
The equilibrium phases and adiabatic temperature for combustion synthesis and reaction hot pressing of Al 2O 3/B 4C employing ① Al, B 2O 3 and C ② C, B, Al 2O 3 as starting reactants were analyzed by the CALP...The equilibrium phases and adiabatic temperature for combustion synthesis and reaction hot pressing of Al 2O 3/B 4C employing ① Al, B 2O 3 and C ② C, B, Al 2O 3 as starting reactants were analyzed by the CALPHAD technique. It is shown that the equilibrium phases at the adiabatic temperature in the combusion system (1) are not the intended composite Al 2O 3/B 4C but other phases. Good agreement with the experimental data was achieved for the calculated adiabatic temperature. The results were discussed with respect to the elimination of the by product in the combustion synthesis. It also revealed that the reactant mixture (2) is a weak exothermic or endothermic reaction system, which can be employed in the reaction hot pressing.展开更多
B 4 C p /Mg-8Li-1Zn and B 4 C p /Mg-8Li-1Al-1Y composites were prepared with hot-extrusion solid-state composite processing. The microstructures and mechanical properties of the composites were studied. With the optim...B 4 C p /Mg-8Li-1Zn and B 4 C p /Mg-8Li-1Al-1Y composites were prepared with hot-extrusion solid-state composite processing. The microstructures and mechanical properties of the composites were studied. With the optimized parameters, the deformation effects and the migration of α phase are improved, and the amount and size of foil gaps are decreased. The bonding force between foils is improved, and the oxidation of foils is lowered. The results of tensile test show that the strengths of the B 4 C p /Mg-8Li-1Zn and B 4 C p /Mg-8Li-1Al-1Y composites are increased obviously after hot-extrusion solid-state composite processing (238 MPa and 257.23 MPa, respectively). The specific strength of B 4 C p /Mg-8Li-1Al-1Y composite is the highest (169.23×10 3 cm).展开更多
Improving the thermal stability of diamond and other superhard materials has great significance in various applications. Here, we report the synthesis and characterization of bulk diamond–cBN–B4C–Si composites sint...Improving the thermal stability of diamond and other superhard materials has great significance in various applications. Here, we report the synthesis and characterization of bulk diamond–cBN–B4C–Si composites sintered at high pressure and high temperature(HPHT, 5.2 GPa, 1620–1680 K for 3–5 min). The results show that the diamond, cBN, B4C,BxSiC, SiO2 and amorphous carbon or a little surplus Si are present in the sintered samples. The onset oxidation temperature of 1673 K in the as-synthesized sample is much higher than that of diamond, cBN, and B4C. The high thermal stability is ascribed to the covalent bonds of B–C, C–N, and the solid-solution of BxSiC formed during the sintering process. The results obtained in this work may be useful in preparing superhard materials with high thermal stability.展开更多
基金Project(51271051)supported by the National Natural Sciecne Foundation of China
文摘The B4C/Mg composites fabricated by metal-assisted pressureless infiltration technique were used as experimental material, and the wear behavior and mechanism of this material were studied. A pin-on-disc apparatus was used to evaluate the wear behavior where loads of 20, 40, 60 and 80 N, and a sliding velocity of 250 r/min were exerted. The results show that B4C/Mg composites possess superior wear resistance than pure Mg under various applied loads, and the content of Ti, as infiltration inducer, has an influence on the wear resistance of B4C/Mg composites. The dominant wear mechanism for pure Mg is abrasion, while that for B4C/Mg composites under low loads is adhesion and delamination. Under high loads, the wear mechanism of B4C/Mg composites can be attributed to thermal softening and melting or plastic deformation.
基金Tabriz Branch,Islamic Azad University for the financial support of this research,which is based on a research project contract
文摘This work aimed to fabricate B4C reinforced aluminum matrix composites via blended powder semisolid forming that is an implementation of the benefits of semisolid forming to the powder metallurgy. Al7075 elements were incrementally added to ethanol solution under mechanical mixing. Al7075 constituents and B4C particles were blended in a high energy ball mill. Cold compacted Al7075/B4C blends were pressed at semisolid state. The effects of the size of the matrix(20, 45 and 63 μm), reinforcing volume fraction(5%, 10% and 20%) and semisolid compaction pressure(50 and 100 MPa) on the morphology, microstructure, density, hardness, compression and bending strength were thoroughly analyzed. Experimental results revealed that the highest microstructural uniformity was achieved when large B4C particles(45 μm) were distributed within the small particles(20 μm) of the matrix phase. Composites with matrix particles larger than reinforcing phase indicated agglomerations in loadings more than 10%(volume fraction). Agglomerated regions resisted against penetration of the liquid phase to the pores and lowered the density and strength of these composites. Composites with 20 μm Al7075 and 20%(volume fraction) 45 μm B4C powder pressed under 100 MPa exhibited the highest values of hardness(HV 190) and compressive strength(336 MPa).
基金Projects(51775366,51805358)supported by the National Natural Science Foundation of ChinaProject(20130321024)supported by the Key Science and Technology Program of Shanxi Province,China。
文摘B4C/6061Al composites reinforced with nano-to micrometer-sized B4C particles were fabricated via powder metallurgy route consisting of spark plasma sintering(SPS)and hot extrusion and rolling(HER),followed by T6 treatment.The microstructural evolution and mechanical properties were investigated.Results showed that the status of B4C particles changed from a network after SPS to a dispersion distribution after HER.The substructured grains reached 66.5%owing to the pinning effect of nano-sized B4C,and the grain size was refined from 3.12μm to 1.56μm after HER.After T6 treatment,dispersed Mg_(2)Si precipitated phases formed,and the grain size increased to 1.87μm.Fine recrystallized grains around micro-sized B4C were smaller than those in the areas with uniform distribution of nano-sized B4C and Mg_(2)Si.The stress distributions of as-rolled and heated composites were similar,considering that the T6 heat treatment was only effective in eliminating the first internal stress.The Vickers,microhardness,and tensile strength of as-SPSed composites were greatly improved from HV 55.45,0.86 GPa,and 180 MPa to HV 77.51,1.08 GPa,and 310 MPa,respectively.Despite the precipitation strengthening,the corresponding values of as-heated composites decreased to HV 70.82,0.85 GPa,and 230 MPa owing to grain coarsening.
文摘The present study aims to fabricate and evaluate the mechanical properties and wear behavior of Mg metal matrix composite,reinforced by 0,1.5,3,5 and 10 vol.%B4C microparticles.Mg−B4C samples were fabricated at 450℃ and under different loading rates by using split Hopkinson bar(SHB),drop hammer(DH)and Instron(QS)at strain rates of 1600,800 and 0.008 s–1,respectively.The mechanical properties including microhardness,quasi-static and dynamic compressive strengths and wear behavior of samples were experimentally investigated.The results show that,the hardness of SHB and DH samples is obtained to be 20.2%and 5.7%higher than that of the QS sample,respectively.The wear rate and wear mass loss of Mg–10.0%B4C samples fabricated by SHB were determined lower than those of the QS sample by nearly 33%and 39%,respectively.The quasi-static compressive strengths of Mg−5.0%B4C are improved by 39%,30%and 29%for the SHB,DH and QS samples,respectively,in comparison with the case of pure Mg.Furthermore,it is discovered that the dynamic compressive strength of samples is 51%−110%higher than their quasi-static value with respect to the B4C content.
基金Project(51271012)supported by the National Natural Science Foundation of China
文摘Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the morphology and composition of the films fabricated in the electrolytes with and without addition of Si C nanoparticles. Results show that Si C particles can be successfully incorporated into the oxide film during the anodizing process and preferentially concentrate within internal cavities and micro-cracks. The ball-on-disk sliding tests indicate that Si C-containing oxide films register much lower wear rate than the oxide films without Si C under dry sliding condition. Si C particles are likely to melt and then are oxidized by frictional heat during sliding tests. Potentiodynamic polarization behavior reveals that the anodized alloy with Si C nanoparticles results in a reduction in passive current density to about 1.54×10-8 A/cm2, which is more than two times lower than that of the Ti O2 film(3.73×10-8 A/cm2). The synthesized composite film has good anti-wear and anti-corrosion properties and the growth mechanism of nanocomposite film is also discussed.
文摘The compressive properties of the aluminum matrix composite reinforced with 55% B4C (volume fraction) particles were characterized using Gleeble 3500 thermal-mechanical testing machine. The compressive stress--strain curves were obtained at the temperature ranging from 298 to 773 K and strain rate ranging from 1×10^(-3) to 5 s ^(-1). The results showed that the dynamic compressive strength decreased more slowly than the quasi-static compressive strength at elevated temperatures, which was attributed to the different failure modes of the composite under dynamic and quasi-static load. The strain rate sensitivity increased from 0.02 to 0.13 when the temperature increased from room temperature to 773 K, suggesting that the strain rate sensitivity of this type of composite is a function of temperature.
基金Project(2011CB605805)supported by the National Basic Research Program of China
文摘The B4C/2024Al composites were successfully produced by pressureless infiltration method, and the effects of heat treatment on phase content and mechanical properties were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and mechanical properties testing. The results show that phases of BnC/2024Al composites include B4C, Al, Al3BC, AlB2 and Al2Cu. The phase species remain unchanged; however, the phase content of the composites changes significantly after heat treatment at the temperature of 660, 700, 800 or 900 ℃ for 12, 24 or 36 h. It is found that the heat treatment results in not only considerable enhancement in hardness, but also reduction in bending strength of the composites. Heat treatment at 800 ℃ for 36 h does best to hardness of the composites, while at 700 ℃ for 36 h it is the most beneficial to their comprehensive mechanical properties.
基金Funded by Natural National Science Foundation of China(NSFC)(No.11305149)National High-Tech R&D Program(863 Program)(No.2013AA030704)。
文摘Aluminum-matrix boron carbide (B4Cp/Al) is a kind of neutron absorbing material widely used in nuclear spent fuel storage. In order to improve the tensile property of B4Cp/Al composites, a new type of nano-Al2O3 particle (Al2O3np) reinforced B4Cp/Al + Al2O3np composites were prepared by powder metallurgy method. The Monte Carlo particle transport program (MCNP) was used to determine the influence of Al2O3np on the thermal neutron absorptivity of composites. The universal material testing machine and scanning electron microscope (SEM) were used to study the mechanical properties, microstructure and fracture morphology of B4Cp/Al composites. The results indicated that the neutron absorption properties of B4Cp/Al composites were not affected by the addition of nano-Al2O3 particles in the range of 1 wt%-15 wt%. The addition of Al2O3np can obviously reduce the grain size of B4Cp/Al matrix metals thus improve the tensile strength of the composites. The addition threshold of Al2O3np is about 2.5 wt%. Both B4Cp and Al2O3np change the fracture characteristics of the composites from toughness to brittleness, and the latter is more important.
文摘A356alloy was used as the base metal to produce boron carbide(B4C)/A356composites using friction stir processing(FSP).The microstructural and mechanical properties of B4C/A356composites were optimized using artificial neural network(ANN)and non-dominated sorting genetic algorithm-II(NSGA-II).Firstly,microstructural properties of the composites fabricated in different processing conditions were investigated.Results show that FSP parameters such as rotational speed,traverse speed and tool pin profile significantly affect the size of the primary silicon(Si)particles of the base metal,as well as the dispersion quality and volume fraction of reinforcing B4C particles in the composite layer.Higher rotational to traverse speeds ratio accompanied by threaded pin profile leads to better particles distribution,finer Si particles and smaller B4C agglomerations.Secondly,hardness and tensile tests were performed to study mechanical properties of the composites.FSP changes the fracture mechanism from brittle form in the as-received metal to very ductile form in the FSPed specimens.Then,a relation between the FSP parameters and microstructural and mechanical properties of the composites was established using ANN.A modified NSGA-II by incorporating diversity preserving mechanism called theεelimination algorithm was employed to obtain the Pareto-optimal set of FSP parameters.
文摘Hardness, friction and wear characteristics of electrodeposited RE Ni W P B 4C PTFE composite coatings were studied, and the reason for these fine characteristics was explained in respect of structure. The results show that 1) the structure of RE Ni W P B 4C PTFE composite coatings experiences a transformation process from amorphous to mixture then to crystal as the heat treatment temperature rises; 2) incorporating of B 4C greatly increases the hardness of the coating; 3) the wear resistance of the coating is best with heat treatment for 1?h at 300?℃, which is greatly superior to that of the other traditional coatings.
文摘The equilibrium phases and adiabatic temperature for combustion synthesis and reaction hot pressing of Al 2O 3/B 4C employing ① Al, B 2O 3 and C ② C, B, Al 2O 3 as starting reactants were analyzed by the CALPHAD technique. It is shown that the equilibrium phases at the adiabatic temperature in the combusion system (1) are not the intended composite Al 2O 3/B 4C but other phases. Good agreement with the experimental data was achieved for the calculated adiabatic temperature. The results were discussed with respect to the elimination of the by product in the combustion synthesis. It also revealed that the reactant mixture (2) is a weak exothermic or endothermic reaction system, which can be employed in the reaction hot pressing.
基金Project supported by the International Exchange Program of Harbin Engineering University for Innovation-oriented Talents Cultivation,ChinaProject(51001034)supported by the National Natural Science Foundation of China+3 种基金Projects(2008AA4CH044,2009AA1AG065,2010AA4BE031)supported by the Key Project of Science and Technology of Harbin City,ChinaProject(HEUCF101001)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(20092304120020)supported by the Research Fund for the Doctoral Program of Higher Education,ChinaProject(208181)supported by the Key Project of Chinese Ministry of Education
文摘B 4 C p /Mg-8Li-1Zn and B 4 C p /Mg-8Li-1Al-1Y composites were prepared with hot-extrusion solid-state composite processing. The microstructures and mechanical properties of the composites were studied. With the optimized parameters, the deformation effects and the migration of α phase are improved, and the amount and size of foil gaps are decreased. The bonding force between foils is improved, and the oxidation of foils is lowered. The results of tensile test show that the strengths of the B 4 C p /Mg-8Li-1Zn and B 4 C p /Mg-8Li-1Al-1Y composites are increased obviously after hot-extrusion solid-state composite processing (238 MPa and 257.23 MPa, respectively). The specific strength of B 4 C p /Mg-8Li-1Al-1Y composite is the highest (169.23×10 3 cm).
基金supported by the National Natural Science Foundation of China(Grant No.51301075)the Project of Development and Reform Commission of Jilin Province,China(Grant No.2014Y136)
文摘Improving the thermal stability of diamond and other superhard materials has great significance in various applications. Here, we report the synthesis and characterization of bulk diamond–cBN–B4C–Si composites sintered at high pressure and high temperature(HPHT, 5.2 GPa, 1620–1680 K for 3–5 min). The results show that the diamond, cBN, B4C,BxSiC, SiO2 and amorphous carbon or a little surplus Si are present in the sintered samples. The onset oxidation temperature of 1673 K in the as-synthesized sample is much higher than that of diamond, cBN, and B4C. The high thermal stability is ascribed to the covalent bonds of B–C, C–N, and the solid-solution of BxSiC formed during the sintering process. The results obtained in this work may be useful in preparing superhard materials with high thermal stability.
基金the National Natural Science Foundation of China(Nos.52174372,51974224)the Natural Science Foundation of Shaanxi Province,China(No.2020JM-047)the Fundamental Research Funds for Central Universities,China(No.xtr0118008)for their support。