In this paper, we prove that any nonlinear Jordan higher derivation on triangular algebras is an additive higher derivation. As a byproduct, we obtain that any nonlinear Jordan derivation on nest algebras over infinit...In this paper, we prove that any nonlinear Jordan higher derivation on triangular algebras is an additive higher derivation. As a byproduct, we obtain that any nonlinear Jordan derivation on nest algebras over infinite dimensional Hilbert suaces is inner.展开更多
Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized higher order algebraic differential equations.
Let N be a nest on a Banach space X, and Alg N be the associated nest algebra. It is shown that if there exists a non-trivial element in N which is complemented in X, then D = (Ln)n∈N is a Lie higher derivation of ...Let N be a nest on a Banach space X, and Alg N be the associated nest algebra. It is shown that if there exists a non-trivial element in N which is complemented in X, then D = (Ln)n∈N is a Lie higher derivation of AlgAl if and only if each Ln has the form Ln(A) : Tn(A) + hn(A)I for all A ∈ AlgN, where (Tn)n∈N is a higher derivation and (hn)n∈N is a sequence of additive functionals satisfying hn([A,B]) = 0 for all A,B ∈ AlgN and all n ∈ N.展开更多
In this paper, we generalize two kinds of graded algebras, δ-Koszul algebras and Kp algebras, to the non-graded cases. The trivial modules of δ-Koszul algebras have pure resolutions, while those of Kp algebras admit...In this paper, we generalize two kinds of graded algebras, δ-Koszul algebras and Kp algebras, to the non-graded cases. The trivial modules of δ-Koszul algebras have pure resolutions, while those of Kp algebras admit non-pure resolutions. We provide necessary and sufficient conditions for a notherian semiperfect algebra either to be a quasi-δ-Koszul algebra or to be a quasi-Kp algebra.展开更多
In this paper, we study the relation of the algebraic properties of the higher-order Courant bracket and Dorfman bracket on the direct sum bundle TM⊕∧<sup>p</sup>T*M for an m-dimensional smooth mani...In this paper, we study the relation of the algebraic properties of the higher-order Courant bracket and Dorfman bracket on the direct sum bundle TM⊕∧<sup>p</sup>T*M for an m-dimensional smooth manifold M, and a Lie 2-algebra which is a “categorified” version of a Lie algebra. We prove that the higher-order Courant algebroids give rise to a semistrict Lie 2-algebra, and we prove that the higher-order Dorfman algebroids give rise to a hemistrict Lie 2-algebra. Consequently, there is an isomorphism from the higher-order Courant algebroids to the higher-order Dorfman algebroids as Lie 2-algebras homomorphism.展开更多
文摘In this paper, we prove that any nonlinear Jordan higher derivation on triangular algebras is an additive higher derivation. As a byproduct, we obtain that any nonlinear Jordan derivation on nest algebras over infinite dimensional Hilbert suaces is inner.
文摘Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized higher order algebraic differential equations.
基金supported by NSF (10771157) of ChinaResearch Fund (2007-38) of Shanxi for Returned ScholarsFoundation of Shanxi University
文摘Let N be a nest on a Banach space X, and Alg N be the associated nest algebra. It is shown that if there exists a non-trivial element in N which is complemented in X, then D = (Ln)n∈N is a Lie higher derivation of AlgAl if and only if each Ln has the form Ln(A) : Tn(A) + hn(A)I for all A ∈ AlgN, where (Tn)n∈N is a higher derivation and (hn)n∈N is a sequence of additive functionals satisfying hn([A,B]) = 0 for all A,B ∈ AlgN and all n ∈ N.
基金Supported by the National Natural Science Foundation of China(10971188)the Zhejiang ProvincialNatural Science Foundation of China(J20080154)
文摘In this paper, we generalize two kinds of graded algebras, δ-Koszul algebras and Kp algebras, to the non-graded cases. The trivial modules of δ-Koszul algebras have pure resolutions, while those of Kp algebras admit non-pure resolutions. We provide necessary and sufficient conditions for a notherian semiperfect algebra either to be a quasi-δ-Koszul algebra or to be a quasi-Kp algebra.
文摘In this paper, we study the relation of the algebraic properties of the higher-order Courant bracket and Dorfman bracket on the direct sum bundle TM⊕∧<sup>p</sup>T*M for an m-dimensional smooth manifold M, and a Lie 2-algebra which is a “categorified” version of a Lie algebra. We prove that the higher-order Courant algebroids give rise to a semistrict Lie 2-algebra, and we prove that the higher-order Dorfman algebroids give rise to a hemistrict Lie 2-algebra. Consequently, there is an isomorphism from the higher-order Courant algebroids to the higher-order Dorfman algebroids as Lie 2-algebras homomorphism.