The theory of (n) truth degrees of formulas is proposed in modal logic for the first time. A consistency theorem is obtained which says that the (n) truth degree of a modality-free formula equals the truth degree ...The theory of (n) truth degrees of formulas is proposed in modal logic for the first time. A consistency theorem is obtained which says that the (n) truth degree of a modality-free formula equals the truth degree of the formula in two-valued propositional logic. Variations of (n) truth degrees of formulas w.r.t. n in temporal logic is investigated. Moreover, the theory of (n) similarity degrees among modal formulas is proposed and the (n) modal logic metric space is derived therefrom which contains the classical logic metric space as a subspace. Finally, a kind of approximate reasoning theory is proposed in modal logic.展开更多
The concept of truth degrees of formulas in Lukasiewicz n-valued propositional logic Ln is proposed. A limit theorem is obtained, which says that the truth function τ-n induced by truth degrees converges to the integ...The concept of truth degrees of formulas in Lukasiewicz n-valued propositional logic Ln is proposed. A limit theorem is obtained, which says that the truth function τ-n induced by truth degrees converges to the integrated truth function τ when n converges to infinite. Hence this limit theorem builds a bridge between the discrete valued Lukasiewicz logic and the continuous valued Lukasiewicz logic. Moreover, the results obtained in the present paper is a natural generalization of the corresponding results obtained in two-valued propositional logic.展开更多
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10331010 and 10771129)the Foundation of 211 Constructionof Shaanxi Normal University
文摘The theory of (n) truth degrees of formulas is proposed in modal logic for the first time. A consistency theorem is obtained which says that the (n) truth degree of a modality-free formula equals the truth degree of the formula in two-valued propositional logic. Variations of (n) truth degrees of formulas w.r.t. n in temporal logic is investigated. Moreover, the theory of (n) similarity degrees among modal formulas is proposed and the (n) modal logic metric space is derived therefrom which contains the classical logic metric space as a subspace. Finally, a kind of approximate reasoning theory is proposed in modal logic.
基金This work was supported by the National Natural Science Foundation of China(Grant No.10331010)
文摘The concept of truth degrees of formulas in Lukasiewicz n-valued propositional logic Ln is proposed. A limit theorem is obtained, which says that the truth function τ-n induced by truth degrees converges to the integrated truth function τ when n converges to infinite. Hence this limit theorem builds a bridge between the discrete valued Lukasiewicz logic and the continuous valued Lukasiewicz logic. Moreover, the results obtained in the present paper is a natural generalization of the corresponding results obtained in two-valued propositional logic.