Semi-interpenetrating (semi-IPNs) hydrogels containing biocompatible silk sericin (SS) and poly(N-isopropylacrylamide)(PNIPAM) were prepared as novel cellular matrices. Their maximum swelling degree and basic ...Semi-interpenetrating (semi-IPNs) hydrogels containing biocompatible silk sericin (SS) and poly(N-isopropylacrylamide)(PNIPAM) were prepared as novel cellular matrices. Their maximum swelling degree and basic characteristics for biomedical applications such as mouse ?broblasts (L929) cell proliferation and desorption were investigated. The results showed that the incorporation of high hydrophilic SS into PNIPAM hydrogel increased the maximum swelling degree of the semi-IPNs hydrogels, and the adhesion and growth of the L929 on semi-IPNs hydrogels were at least comparable to, or even better than, that on conventional PNIPAM hydrogel. In addition, L929 cells were found to detach from the hydrogels surface naturally by controlling environmental temperature. These results suggest great potential of semi-IPNs hydrogels in tissue engineering.展开更多
The economy of most rural locations in the semi-arid region of Llano Estacado in the southern United States is predominantly based on agriculture, primarily beef and wheat (Triticum aestivum L.) production. This regio...The economy of most rural locations in the semi-arid region of Llano Estacado in the southern United States is predominantly based on agriculture, primarily beef and wheat (Triticum aestivum L.) production. This region is prone to drought and is projected to experience a drier climate. Droughts that coincide with the critical phenological phases of a crop can be remarkably costly. Although drought cannot be prevented, its losses can be minimized through mitigation measures if it is predicted in advance. Predicting yield loss from an imminent drought is an important need of stakeholders. One way to fulfill this need is using an agricultural drought index, such as the Agricultural Reference Index for Drought (ARID). Being plant physiology-based, ARID can represent drought-yield relationships accurately. This study developed an ARID-based yield model for predicting the drought-induced yield loss for winter wheat in this region by accounting for its phenological phase-specific sensitivity to water stress. The reasonable values of the drought sensitivity coefficients of the yield model indicated that it could reflect the phenomenon of water stress decreasing the winter wheat yields in this region reasonably. The values of the various metrics used to evaluate the model, including Willmott Index (0.86), Nash-Sutcliffe Index (0.61), and percentage error (26), indicated that the yield model performed fairly well at predicting the drought-induced yield loss for winter wheat. The yield model may be useful for predicting the drought-induced yield loss for winter wheat in the study region and scheduling irrigation allocation based on phenological phase-specific drought sensitivity.展开更多
Reversible watermarking schemes for relational database are usually classified into two groups: robust schemes and fragile schemes. The main limitation of existing reversible fragile methods is that they cannot differ...Reversible watermarking schemes for relational database are usually classified into two groups: robust schemes and fragile schemes. The main limitation of existing reversible fragile methods is that they cannot differentiate between legal and malicious modifications. In this paper, we introduce a novel lossless semi-fragile scheme based on prediction-error expansion for content protection of relational database. In the proposed method, all attributes in a database relation are first classified according to their sensitivity to legitimate updates. Then, the watermark is embedded by expanding the prediction error of the two least significant digits of securely selected attributes. At watermark extraction, the proposed method has the ability to fully restore the original data while detecting and localizing tampering. The applicability of our method is demonstrated theoretically and experimentally.展开更多
The aim of this paper is to broaden the application of Stochastic Configuration Network (SCN) in the semi-supervised domain by utilizing common unlabeled data in daily life. It can enhance the classification accuracy ...The aim of this paper is to broaden the application of Stochastic Configuration Network (SCN) in the semi-supervised domain by utilizing common unlabeled data in daily life. It can enhance the classification accuracy of decentralized SCN algorithms while effectively protecting user privacy. To this end, we propose a decentralized semi-supervised learning algorithm for SCN, called DMT-SCN, which introduces teacher and student models by combining the idea of consistency regularization to improve the response speed of model iterations. In order to reduce the possible negative impact of unsupervised data on the model, we purposely change the way of adding noise to the unlabeled data. Simulation results show that the algorithm can effectively utilize unlabeled data to improve the classification accuracy of SCN training and is robust under different ground simulation environments.展开更多
In this paper, the solution of the matrix second semi-tensor product equation A∘lX∘lB=Cis studied. Firstly, the solvability of the matrix-vector second semi-tensor product equation is investigated. At the same time,...In this paper, the solution of the matrix second semi-tensor product equation A∘lX∘lB=Cis studied. Firstly, the solvability of the matrix-vector second semi-tensor product equation is investigated. At the same time, the compatibility conditions, the sufficient and necessary conditions and the specific solution methods for the matrix solution are given. Secondly, we further consider the solvability of the second semi-tensor product equation of the matrix. For each part, several examples are given to illustrate the validity of the results.展开更多
As an extension of overlap functions, pseudo-semi-overlap functions are a crucial class of aggregation functions. Therefore, (I, PSO)-fuzzy rough sets are introduced, utilizing pseudo-semi-overlap functions, and furth...As an extension of overlap functions, pseudo-semi-overlap functions are a crucial class of aggregation functions. Therefore, (I, PSO)-fuzzy rough sets are introduced, utilizing pseudo-semi-overlap functions, and further extended for applications in image edge extraction. Firstly, a new clustering function, the pseudo-semi-overlap function, is introduced by eliminating the symmetry and right continuity present in the overlap function. The relaxed nature of this function enhances its applicability in image edge extraction. Secondly, the definitions of (I, PSO)-fuzzy rough sets are provided, using (I, PSO)-fuzzy rough sets, a pair of new fuzzy mathematical morphological operators (IPSOFMM operators) is proposed. Finally, by combining the fuzzy C-means algorithm and IPSOFMM operators, a novel image edge extraction algorithm (FCM-IPSO algorithm) is proposed and implemented. Compared to existing algorithms, the FCM-IPSO algorithm exhibits more image edges and a 73.81% decrease in the noise introduction rate. The outstanding performance of (I, PSO)-fuzzy rough sets in image edge extraction demonstrates their practical application value.展开更多
文摘Semi-interpenetrating (semi-IPNs) hydrogels containing biocompatible silk sericin (SS) and poly(N-isopropylacrylamide)(PNIPAM) were prepared as novel cellular matrices. Their maximum swelling degree and basic characteristics for biomedical applications such as mouse ?broblasts (L929) cell proliferation and desorption were investigated. The results showed that the incorporation of high hydrophilic SS into PNIPAM hydrogel increased the maximum swelling degree of the semi-IPNs hydrogels, and the adhesion and growth of the L929 on semi-IPNs hydrogels were at least comparable to, or even better than, that on conventional PNIPAM hydrogel. In addition, L929 cells were found to detach from the hydrogels surface naturally by controlling environmental temperature. These results suggest great potential of semi-IPNs hydrogels in tissue engineering.
文摘The economy of most rural locations in the semi-arid region of Llano Estacado in the southern United States is predominantly based on agriculture, primarily beef and wheat (Triticum aestivum L.) production. This region is prone to drought and is projected to experience a drier climate. Droughts that coincide with the critical phenological phases of a crop can be remarkably costly. Although drought cannot be prevented, its losses can be minimized through mitigation measures if it is predicted in advance. Predicting yield loss from an imminent drought is an important need of stakeholders. One way to fulfill this need is using an agricultural drought index, such as the Agricultural Reference Index for Drought (ARID). Being plant physiology-based, ARID can represent drought-yield relationships accurately. This study developed an ARID-based yield model for predicting the drought-induced yield loss for winter wheat in this region by accounting for its phenological phase-specific sensitivity to water stress. The reasonable values of the drought sensitivity coefficients of the yield model indicated that it could reflect the phenomenon of water stress decreasing the winter wheat yields in this region reasonably. The values of the various metrics used to evaluate the model, including Willmott Index (0.86), Nash-Sutcliffe Index (0.61), and percentage error (26), indicated that the yield model performed fairly well at predicting the drought-induced yield loss for winter wheat. The yield model may be useful for predicting the drought-induced yield loss for winter wheat in the study region and scheduling irrigation allocation based on phenological phase-specific drought sensitivity.
文摘Reversible watermarking schemes for relational database are usually classified into two groups: robust schemes and fragile schemes. The main limitation of existing reversible fragile methods is that they cannot differentiate between legal and malicious modifications. In this paper, we introduce a novel lossless semi-fragile scheme based on prediction-error expansion for content protection of relational database. In the proposed method, all attributes in a database relation are first classified according to their sensitivity to legitimate updates. Then, the watermark is embedded by expanding the prediction error of the two least significant digits of securely selected attributes. At watermark extraction, the proposed method has the ability to fully restore the original data while detecting and localizing tampering. The applicability of our method is demonstrated theoretically and experimentally.
文摘The aim of this paper is to broaden the application of Stochastic Configuration Network (SCN) in the semi-supervised domain by utilizing common unlabeled data in daily life. It can enhance the classification accuracy of decentralized SCN algorithms while effectively protecting user privacy. To this end, we propose a decentralized semi-supervised learning algorithm for SCN, called DMT-SCN, which introduces teacher and student models by combining the idea of consistency regularization to improve the response speed of model iterations. In order to reduce the possible negative impact of unsupervised data on the model, we purposely change the way of adding noise to the unlabeled data. Simulation results show that the algorithm can effectively utilize unlabeled data to improve the classification accuracy of SCN training and is robust under different ground simulation environments.
文摘In this paper, the solution of the matrix second semi-tensor product equation A∘lX∘lB=Cis studied. Firstly, the solvability of the matrix-vector second semi-tensor product equation is investigated. At the same time, the compatibility conditions, the sufficient and necessary conditions and the specific solution methods for the matrix solution are given. Secondly, we further consider the solvability of the second semi-tensor product equation of the matrix. For each part, several examples are given to illustrate the validity of the results.
文摘As an extension of overlap functions, pseudo-semi-overlap functions are a crucial class of aggregation functions. Therefore, (I, PSO)-fuzzy rough sets are introduced, utilizing pseudo-semi-overlap functions, and further extended for applications in image edge extraction. Firstly, a new clustering function, the pseudo-semi-overlap function, is introduced by eliminating the symmetry and right continuity present in the overlap function. The relaxed nature of this function enhances its applicability in image edge extraction. Secondly, the definitions of (I, PSO)-fuzzy rough sets are provided, using (I, PSO)-fuzzy rough sets, a pair of new fuzzy mathematical morphological operators (IPSOFMM operators) is proposed. Finally, by combining the fuzzy C-means algorithm and IPSOFMM operators, a novel image edge extraction algorithm (FCM-IPSO algorithm) is proposed and implemented. Compared to existing algorithms, the FCM-IPSO algorithm exhibits more image edges and a 73.81% decrease in the noise introduction rate. The outstanding performance of (I, PSO)-fuzzy rough sets in image edge extraction demonstrates their practical application value.