The central problem of genetics is gene interaction since genes in the course of individual organism development interact with other genes, that’s why their effects may change. Studies for the last 100 years managed ...The central problem of genetics is gene interaction since genes in the course of individual organism development interact with other genes, that’s why their effects may change. Studies for the last 100 years managed to discover that the entire diversity of inter-gene interactions is presented in four major forms: complementarity, epistasis, polymery, and modifying effect of genes. However, gene interaction mechanism which is reflected on the segregation nature of variously crossed hybrids has not been sufficiently studied. Exclusive of molecular genetics, biochemistry and physiology, a genetic analysis of inheritance of characteristics in gene interaction taken by itself cannot reveal nature of this interaction. Lately, molecular-genetic and physiological studies on A. thaliana mutants have enabled to isolate and sequence a wide range of genes controlling certain links of the signalling chain. At the same time, effect of the plant development regulation signalling system on interaction of these genes in inheritance of characteristics of Arabidopsis root system haven’t been studied so far which was a cause for our studies. Gene interaction problem is closely related to the plant development regulation signalling system. Mechanism involved in gene interaction may be explained based on current idea of molecular principles of biological response. Affected by mutations occurring in various genes that control certain links of the signalling chain, signalling path to the cell nucleus and response are blocked partially or in full which leads to distortion in expression of the characteristic on the plant level in general or its organ level. Such phenomenon is observed in realization of many characteristics in animals and plants, including in A. thaliana. In inheritance of such characteristics, as a rule, both allelic, and non-allelic gene interactions are observed. Results of a study of the plant signalling system interconnection and gene interaction in inheritance of characteristics of Arabidopsis root system are presented. It is established that complementary interaction of genes RHD3 and SAR1 is observed in the second crossing generation for plants of rhd3-1 × sar-1 mutant lines. When gpa1-3 × slr-1 mutant-line plants are crossed, recessive epistasis (slr-1 slr-1 > GPA1_) occurs in F<sub>2</sub> generation. Polymeric interaction of genes SHY2 and MSG1 is observed in F<sub>2</sub> in crossing of shy2-2 × msg1-2 mutant-line plants.展开更多
Arabidopsis thaliana seedlings were cultivated in 0-500 μmol/L of extraneous cerium (Ce) for 7 d to investigate the toxicity, uptake and translocation of rare earth elements (REEs). The results showed that Ce cou...Arabidopsis thaliana seedlings were cultivated in 0-500 μmol/L of extraneous cerium (Ce) for 7 d to investigate the toxicity, uptake and translocation of rare earth elements (REEs). The results showed that Ce could be largely absorbed by the roots ofA. thaliana and translocated to the shoots. But the uptake rates of Ce by the roots were much higher than the translocation rates from roots to shoots. Ultrastructural analysis revealed that Ce was mainly distributed on the cell wall. At higher concentration, Ce could also enter cell, destroy the ultrastructure of cells and disturb the intrinsic balance of nutrient elements of A, thaliana, Addition of Ce (50-500 μmol/L) to the culture medium significantly inhibited the elongation of primary roots, decreased chlorophyll content, rosette diameter and fresh mass of plants. The damage increased with the increase of Ce concentration in culture medium, although primary root elongation, chlorophyll content, and rosette diameter were stimulated by relatively low concentration (0.5 μmol/L) of Ce. Thus, it is speculated that REEs may become a new type contamination if we don't well control the release of REEs into the environment.展开更多
Abstract: Cis-cinnamic acid (CA) is a naturally occurring compound, presumably converted from trans-CA in higher plants. To investigate the effect of cis-CA on the activity of Arabidopsis phenylalanine ammonia lyase (...Abstract: Cis-cinnamic acid (CA) is a naturally occurring compound, presumably converted from trans-CA in higher plants. To investigate the effect of cis-CA on the activity of Arabidopsis phenylalanine ammonia lyase (PAL), AtPAL1, AtPAL2, and AtPAL4 genes were isolated using reverse transcription poly-merase chain reaction. These genes were fused to a glutathione S-transferase gene and overexpressed in a heterologous prokaryotic system of Escherichia coli. The purified PAL1, PAL2 and PAL4 enzymes were characterized biochemically to determine the effects of cis-CA on the kinetic parameter Km. The results showed that cis-CA is a competitive inhibitor for PAL1, but not PAL2 and PAL4, whereas trans-CA acts as a competitive inhibitor for all three PAL isomers, suggesting that cis- and trans-CA have different effects on the catalytic activity of PAL.展开更多
文摘The central problem of genetics is gene interaction since genes in the course of individual organism development interact with other genes, that’s why their effects may change. Studies for the last 100 years managed to discover that the entire diversity of inter-gene interactions is presented in four major forms: complementarity, epistasis, polymery, and modifying effect of genes. However, gene interaction mechanism which is reflected on the segregation nature of variously crossed hybrids has not been sufficiently studied. Exclusive of molecular genetics, biochemistry and physiology, a genetic analysis of inheritance of characteristics in gene interaction taken by itself cannot reveal nature of this interaction. Lately, molecular-genetic and physiological studies on A. thaliana mutants have enabled to isolate and sequence a wide range of genes controlling certain links of the signalling chain. At the same time, effect of the plant development regulation signalling system on interaction of these genes in inheritance of characteristics of Arabidopsis root system haven’t been studied so far which was a cause for our studies. Gene interaction problem is closely related to the plant development regulation signalling system. Mechanism involved in gene interaction may be explained based on current idea of molecular principles of biological response. Affected by mutations occurring in various genes that control certain links of the signalling chain, signalling path to the cell nucleus and response are blocked partially or in full which leads to distortion in expression of the characteristic on the plant level in general or its organ level. Such phenomenon is observed in realization of many characteristics in animals and plants, including in A. thaliana. In inheritance of such characteristics, as a rule, both allelic, and non-allelic gene interactions are observed. Results of a study of the plant signalling system interconnection and gene interaction in inheritance of characteristics of Arabidopsis root system are presented. It is established that complementary interaction of genes RHD3 and SAR1 is observed in the second crossing generation for plants of rhd3-1 × sar-1 mutant lines. When gpa1-3 × slr-1 mutant-line plants are crossed, recessive epistasis (slr-1 slr-1 > GPA1_) occurs in F<sub>2</sub> generation. Polymeric interaction of genes SHY2 and MSG1 is observed in F<sub>2</sub> in crossing of shy2-2 × msg1-2 mutant-line plants.
基金National Natural Science Foundation of China(30900071,30671126)
文摘Arabidopsis thaliana seedlings were cultivated in 0-500 μmol/L of extraneous cerium (Ce) for 7 d to investigate the toxicity, uptake and translocation of rare earth elements (REEs). The results showed that Ce could be largely absorbed by the roots ofA. thaliana and translocated to the shoots. But the uptake rates of Ce by the roots were much higher than the translocation rates from roots to shoots. Ultrastructural analysis revealed that Ce was mainly distributed on the cell wall. At higher concentration, Ce could also enter cell, destroy the ultrastructure of cells and disturb the intrinsic balance of nutrient elements of A, thaliana, Addition of Ce (50-500 μmol/L) to the culture medium significantly inhibited the elongation of primary roots, decreased chlorophyll content, rosette diameter and fresh mass of plants. The damage increased with the increase of Ce concentration in culture medium, although primary root elongation, chlorophyll content, and rosette diameter were stimulated by relatively low concentration (0.5 μmol/L) of Ce. Thus, it is speculated that REEs may become a new type contamination if we don't well control the release of REEs into the environment.
文摘Abstract: Cis-cinnamic acid (CA) is a naturally occurring compound, presumably converted from trans-CA in higher plants. To investigate the effect of cis-CA on the activity of Arabidopsis phenylalanine ammonia lyase (PAL), AtPAL1, AtPAL2, and AtPAL4 genes were isolated using reverse transcription poly-merase chain reaction. These genes were fused to a glutathione S-transferase gene and overexpressed in a heterologous prokaryotic system of Escherichia coli. The purified PAL1, PAL2 and PAL4 enzymes were characterized biochemically to determine the effects of cis-CA on the kinetic parameter Km. The results showed that cis-CA is a competitive inhibitor for PAL1, but not PAL2 and PAL4, whereas trans-CA acts as a competitive inhibitor for all three PAL isomers, suggesting that cis- and trans-CA have different effects on the catalytic activity of PAL.