Nitrogen (N) use efficiency is usually less than 50%, and it remains a major problem in rice cultivation. Controlled release fertilizer (CRF) technology is one of the well-known efforts to overcome this problem. T...Nitrogen (N) use efficiency is usually less than 50%, and it remains a major problem in rice cultivation. Controlled release fertilizer (CRF) technology is one of the well-known efforts to overcome this problem. The efficiency of CRF, however, is very much dependent on the timing of nutrient release. This study was conducted to determine the precise time of N uptake by rice as a guideline to develop efficient CRF. Fertilizer N uptake by rice at different growth stages was investigated by using 15N isotopic technique. Rice was planted in pots, with 15N urea as N source at the rate of 120 kg/hm2. Potassium and phosphorus were applied at the same rate of 50 kg/hm2. Standard agronomic practices were employed throughout the growing periods. Rice plants were harvested every two weeks until maturation at the 14th week and analyzed for total N and 15N content. Nitrogen derived from fertilizer was calculated. Total N uptake in plants consistently increased until the 11th week. After that, it started to plateau and finally declined. Moreover, N utilization by rice plants peaked at 50%, which occurred during the 11th week after transplanting. N derived from fertilizer in rice plants were in the range of 18.7% to 40.0% in all plant tissues. The remaining N was derived from soil. Based on this study, N release from CRF should complete by the 11th week after planting to ensure the maximum fertilizer N uptake by rice plants. Efficient CRF should contribute to higher N derived from fertilizer which also resulted in a higher total N uptake by rice plants, increasing the potential of rice to produce higher yield while at the same time of reducina loss.展开更多
Fish otolithδ^(15) N(δ^(15) N_(oto))is a demonstrated source of information of dietary history for marine fi sh as it is available iN_(oto)lith archives and sedimentary deposits unlike white muscle tissue(WMT).WMT a...Fish otolithδ^(15) N(δ^(15) N_(oto))is a demonstrated source of information of dietary history for marine fi sh as it is available iN_(oto)lith archives and sedimentary deposits unlike white muscle tissue(WMT).WMT and stomach content data are insufficient for trophic level(TL)data of past fi shes which is important for the changes of marine fi shery resources over long time scales.To determine the correlation betweenδ^(15) N_(oto) and fi sh WMTδ^(15) N(δ^(15) N_(wmt))and the feasibility of usingδ^(15) N_(oto) in characterizing the TLs of marine fi shes,we conducted nitrogen stable isotope analysis(SIA)in the otolith and WMT of 36 marine fi sh species sampled from the Yellow Sea and northern East China Sea in 2011-2014.Bothδ^(15) N_(oto) andδ^(15) N_(wmt) were analyzed using an elemental analyzer coupled with an isotope ratio mass spectrometer(EA-IRMS).Multiple otoliths were combined to make each otolith measurement and were analyzed as-is without a carbonate dissolution pre-processing step.δ^(15) N_(oto) andδ^(15) N_(wmt) comparisons for species in the Yellow Sea and northern East China Sea are currently lacking and would be helpful for both regional studies and for increasing the number of species for whichδ^(15) N_(oto) andδ^(15) N_(wmt) have been compared.Additionally,to determine the relative accuracy of trophic level calculated usingδ^(15) N_(oto),we compared TL calculated fromδ^(15) N_(oto) to traditional trophic level metrics calculated usingδ^(15) N_(wmt).The results showed a positive and highly signifi cant correlation(R=0.780,P<0.001)betweenδ^(15) N_(oto) andδ^(15) N_(wmt).Trophic level estimation using WMT(TL wmt)and otolith(TL oto)showed congruence in our study,which is not entirely surprising given thatδ^(15) N_(oto) was regressed againstδ^(15) N_(wmt) and the resulting regression coefficient was used to convertδ^(15) N_(oto) toδ^(15) N_(wmt) prior to calculating TL oto.This conversion was required in order to be consistent with previousδ^(15) N_(wmt)-based calculations of TL for comparison.TL oto calculations resulted in TL values that were largely within 5%-10%of TL values calculated withδ^(15) N_(wmt).Our fi ndings show thatδ^(15) N_(oto) is a feasible technique for characterizing the TLs of marine fi sh and can also assist in food web and marine ecosystem studies.展开更多
Nitrogen is one of the essential nutrient elements for plant growth,which plays an important role in the growth and development of sugarcane. The whole growth cycle of sugarcane needs a large amount of nitrogen. Incre...Nitrogen is one of the essential nutrient elements for plant growth,which plays an important role in the growth and development of sugarcane. The whole growth cycle of sugarcane needs a large amount of nitrogen. Increasing the application of nitrogen can improve the yield of sugarcane,but it will also cause environmental pollution. Therefore,how to control or reduce the application of nitrogen fertilizer while continuously increasing sugarcane yield,reduce the increase of sugarcane production cost and environmental pollution caused by excessive application of nitrogen fertilizer has become an important scientific problem faced by sugarcane industry in China.^15N stable isotope labeling technology has been applied to many crops as a nitrogen research tool. In order to better understand the demand of nitrogen fertilizer in soil-cane system,this paper reviewed nitrogen allocation in plants,nitrogen loss,nitrogen recycling and endogenous nitrogen fixation of sugarcane based on^15N stable isotope labeling technology used in the nitrogen uptake and utilization,providing a theoretical basis for the improvement of sugarcane nitrogen use efficiency and the efficient nitrogen fertilizer management of sugarcane.展开更多
Shijiazhuang City is the capital of Hebei province, China. Groundwater is the major water supply source for living and industry need of the city. Due to a rapid increase of population and development of industry and a...Shijiazhuang City is the capital of Hebei province, China. Groundwater is the major water supply source for living and industry need of the city. Due to a rapid increase of population and development of industry and agriculture, a series of groundwater environmental problems are created. In the paper, the situation of groundwater pollution in Shijiazhuang city is reported. Based on the groundwater chemical data and ^(15)N measurement results both on groundwater and soils, the reason of groundwater nitra...展开更多
The high-resolution absorption spectra of the (2,0),(3,1),and (8,5) bands of the A^2Π^u-X^2∑g^+ system of ^15N2^+ have been recorded by using velocity modulation spectroscopy technique in the near infrared r...The high-resolution absorption spectra of the (2,0),(3,1),and (8,5) bands of the A^2Π^u-X^2∑g^+ system of ^15N2^+ have been recorded by using velocity modulation spectroscopy technique in the near infrared region.The rotational constants of the X^2∑g^+ and A^2Πu states of ^15N2^+ were derived from the spectroscopic data.The isotope shifts of these bands of the A^2Πu-X^2∑g^+ system of ^14N2^+ and ^15N2^+ were also analyzed and discussed.展开更多
In this study,the nitrogen removal performance of partial denitrificaiton/anammox(PDA)process was investigated by using an UASB reactor.High total nitrogen(TN)removal efficiency(91.97%)was achieved at an influent nitr...In this study,the nitrogen removal performance of partial denitrificaiton/anammox(PDA)process was investigated by using an UASB reactor.High total nitrogen(TN)removal efficiency(91.97%)was achieved at an influent nitrogen loading rate of 0.64 kg/(m3·d).Anammox bacteria did execute the function of converting nitrate to nitrite in PDA system according to ^(15)N isotope labeling experiments and the contribution was approximately 36.3%.Candidatus_Brocadia,Candidatus_Kuenenia and Thauera were functional strains for anammox and denitrification process,respectively.Thauera and Candidatus_Brocadia were more important for TN removal at high loading rates(0.64 kg/(m3·d)).This result can provide a theoretical and technical foundation for the application of the PDA process.展开更多
The Paleocene coals of the Salt Range in the Punjab Province of Pakistan have great economic potential;however,their trace element and stable isotopic characteristics have not been studied in detail except for a few s...The Paleocene coals of the Salt Range in the Punjab Province of Pakistan have great economic potential;however,their trace element and stable isotopic characteristics have not been studied in detail except for a few sporadic samples.In this study,a total of 59 coal samples of which 14 are obtained from open cast mines have been investigated for elemental composition andδ^(13)C-δ^(15)N isotopic signatures.Average contents of trace elements such as Co,Cr,Cu,Pb,Sr,Th,U,V,and Zn are 7.4,41.7,11.2,12.5,90.2,4.0,1.9,128,and 31.1 mg/kg,respectively.These values,when compared with the World Coal Clarke values,were relatively higher in low-rank coals in comparison with Clarke values for brown coals.Likewise,As(20.4 mg/kg),Co(6.6 mg/kg),Cr(22.4 mg/kg),Cu(^(13).3 mg/kg),Pb(19.2 mg/kg),Sr(^(15)4.7 mg/kg),Th(2.5 mg/kg),V(47.8 mg/kg),and Zn(75.1 mg/kg)were significantly higher in the sub-bituminous to bituminous coals of the Salt Range.Mineralogical analysis,based on X-ray diffraction and energy dispersive X-ray spectroscopy,revealed that the studied samples contain illite,kaolinite calcite,gypsum,pyrite,and quartz.Elemental affinity with organic and inorganic phases of coals calculated by an indirect statistical approach indicated a positive association of ash content with Ag,Al,Co,Cr,Cs,Cu,Mn,P,Rb,Pb,Th,U,and V,suggesting the presence of inorganic components in studied coals.However,As,Fe,Sr,and Zn exhibit negative correlations that imply their association with the organic fraction.Theδ^(13)C andδ^(15)N isotopic range and average−24.94‰to−25.86‰(−25.41‰)and−2.77‰to 3.22‰(0.96‰),respectively,reflecting 3C type modern terrestrial vegetation were common in the palaeomires of studied coal seams.In addition,the trivial variations of 0.92‰and 0.45‰among^(13)C and^(15)N values can be attributed to water level fluctuations and plant assemblies.展开更多
Stable isotope values, δ13C and δ15N, were determined for four primary producers and 19 dominant consumers in a small artificial lagoon located in Hangzhou Bay. Based on these results the major pathways for energy f...Stable isotope values, δ13C and δ15N, were determined for four primary producers and 19 dominant consumers in a small artificial lagoon located in Hangzhou Bay. Based on these results the major pathways for energy flow and trophic structure of the artificial lagoon ecosystem were characterized. The mean δ13C values for the 19 consumers ranged from -22.99‰ to -14.24‰. Apart from so-iny mullet Liza haematocheila, the other 18 consumers had intermediate δ13C values between those of epibenthic microalgae and particulate organic matter (POM). The results of a multiple source linear mixing model (IsoSource model) indicated that 50% or more of the organic carbon in the tissues of most consumers was derived from epibenthic microalgae. This indicated that these primary producers were the main food source fueling the lagoon food web. The mean δ15N values for the 19 consumers varied between 4.93‰ and 12.97‰ and indicated four trophic levels in the lagoon. Four macroinvertebrates and zooplankton represented the primary consumers, whilst the other 14 consumers occupied the secondary and tertiary consumer levels. The 19 consumers were divided into three trophic guilds (detritivores/suspension feeders, omnivores and carnivores).展开更多
[ Objective] The study aimed to reveal the biological nitrogen fixation capacity by sugarcane from Brazil under the ecological conditions of Guangxi, and to provide reference for study on the biological nitrogen fixat...[ Objective] The study aimed to reveal the biological nitrogen fixation capacity by sugarcane from Brazil under the ecological conditions of Guangxi, and to provide reference for study on the biological nitrogen fixation capacity by sugarcane and related generalization and application. [ Method] The ^15N isotopic fertilizer was solely applied on plants of three sugarcane cultivars planted in greenhouse with no other fertilizer forms applied, meanwhile virus-free stem seedling was regarded as control, to measure their biological nitrogen fixation capacity using ^15N isotope. [ Result ] The nitrogen fixation rate of B8 from Brazil reached 26.91%, while Guitang 11 and RIC16 presented no or poor nitrogen fixation capacity. [ Conclusion] The sugarcane eultivar B8 from Brazil showed some nitrogen fixation capacity under the ecological conditions of Guangxi.展开更多
基金Long-Term Research Grant Scheme of the Ministry of Education, Malaysia under the project ‘One BAJA: The Next Generation Green and Economical Urea’
文摘Nitrogen (N) use efficiency is usually less than 50%, and it remains a major problem in rice cultivation. Controlled release fertilizer (CRF) technology is one of the well-known efforts to overcome this problem. The efficiency of CRF, however, is very much dependent on the timing of nutrient release. This study was conducted to determine the precise time of N uptake by rice as a guideline to develop efficient CRF. Fertilizer N uptake by rice at different growth stages was investigated by using 15N isotopic technique. Rice was planted in pots, with 15N urea as N source at the rate of 120 kg/hm2. Potassium and phosphorus were applied at the same rate of 50 kg/hm2. Standard agronomic practices were employed throughout the growing periods. Rice plants were harvested every two weeks until maturation at the 14th week and analyzed for total N and 15N content. Nitrogen derived from fertilizer was calculated. Total N uptake in plants consistently increased until the 11th week. After that, it started to plateau and finally declined. Moreover, N utilization by rice plants peaked at 50%, which occurred during the 11th week after transplanting. N derived from fertilizer in rice plants were in the range of 18.7% to 40.0% in all plant tissues. The remaining N was derived from soil. Based on this study, N release from CRF should complete by the 11th week after planting to ensure the maximum fertilizer N uptake by rice plants. Efficient CRF should contribute to higher N derived from fertilizer which also resulted in a higher total N uptake by rice plants, increasing the potential of rice to produce higher yield while at the same time of reducina loss.
基金Supported by the National Key Basic Research Development Program of China(973 Program)(No.2015CB453303)the National Science Foundation for Young Scientists of China(No.41606195)。
文摘Fish otolithδ^(15) N(δ^(15) N_(oto))is a demonstrated source of information of dietary history for marine fi sh as it is available iN_(oto)lith archives and sedimentary deposits unlike white muscle tissue(WMT).WMT and stomach content data are insufficient for trophic level(TL)data of past fi shes which is important for the changes of marine fi shery resources over long time scales.To determine the correlation betweenδ^(15) N_(oto) and fi sh WMTδ^(15) N(δ^(15) N_(wmt))and the feasibility of usingδ^(15) N_(oto) in characterizing the TLs of marine fi shes,we conducted nitrogen stable isotope analysis(SIA)in the otolith and WMT of 36 marine fi sh species sampled from the Yellow Sea and northern East China Sea in 2011-2014.Bothδ^(15) N_(oto) andδ^(15) N_(wmt) were analyzed using an elemental analyzer coupled with an isotope ratio mass spectrometer(EA-IRMS).Multiple otoliths were combined to make each otolith measurement and were analyzed as-is without a carbonate dissolution pre-processing step.δ^(15) N_(oto) andδ^(15) N_(wmt) comparisons for species in the Yellow Sea and northern East China Sea are currently lacking and would be helpful for both regional studies and for increasing the number of species for whichδ^(15) N_(oto) andδ^(15) N_(wmt) have been compared.Additionally,to determine the relative accuracy of trophic level calculated usingδ^(15) N_(oto),we compared TL calculated fromδ^(15) N_(oto) to traditional trophic level metrics calculated usingδ^(15) N_(wmt).The results showed a positive and highly signifi cant correlation(R=0.780,P<0.001)betweenδ^(15) N_(oto) andδ^(15) N_(wmt).Trophic level estimation using WMT(TL wmt)and otolith(TL oto)showed congruence in our study,which is not entirely surprising given thatδ^(15) N_(oto) was regressed againstδ^(15) N_(wmt) and the resulting regression coefficient was used to convertδ^(15) N_(oto) toδ^(15) N_(wmt) prior to calculating TL oto.This conversion was required in order to be consistent with previousδ^(15) N_(wmt)-based calculations of TL for comparison.TL oto calculations resulted in TL values that were largely within 5%-10%of TL values calculated withδ^(15) N_(wmt).Our fi ndings show thatδ^(15) N_(oto) is a feasible technique for characterizing the TLs of marine fi sh and can also assist in food web and marine ecosystem studies.
基金Supported by National Natural Science Foundation of China(31860350)Guangxi Project(GK AA17202042-6)+2 种基金Earmarked Fund for China Agriculture Research System(CARS-170105)Guangxi Innovation Team Program(gjnytxgxcxtd-03-01)Fund of Guangxi Academy of Agricultural Sciences(GNK2018YT02,2018YM01,2020YM24)。
文摘Nitrogen is one of the essential nutrient elements for plant growth,which plays an important role in the growth and development of sugarcane. The whole growth cycle of sugarcane needs a large amount of nitrogen. Increasing the application of nitrogen can improve the yield of sugarcane,but it will also cause environmental pollution. Therefore,how to control or reduce the application of nitrogen fertilizer while continuously increasing sugarcane yield,reduce the increase of sugarcane production cost and environmental pollution caused by excessive application of nitrogen fertilizer has become an important scientific problem faced by sugarcane industry in China.^15N stable isotope labeling technology has been applied to many crops as a nitrogen research tool. In order to better understand the demand of nitrogen fertilizer in soil-cane system,this paper reviewed nitrogen allocation in plants,nitrogen loss,nitrogen recycling and endogenous nitrogen fixation of sugarcane based on^15N stable isotope labeling technology used in the nitrogen uptake and utilization,providing a theoretical basis for the improvement of sugarcane nitrogen use efficiency and the efficient nitrogen fertilizer management of sugarcane.
基金supported by International Atomic Energy Agency (IAEA) (No. :11515/RBF)
文摘Shijiazhuang City is the capital of Hebei province, China. Groundwater is the major water supply source for living and industry need of the city. Due to a rapid increase of population and development of industry and agriculture, a series of groundwater environmental problems are created. In the paper, the situation of groundwater pollution in Shijiazhuang city is reported. Based on the groundwater chemical data and ^(15)N measurement results both on groundwater and soils, the reason of groundwater nitra...
基金supported by the National Natural Science Foundation of China(Grant No.11674096)
文摘The high-resolution absorption spectra of the (2,0),(3,1),and (8,5) bands of the A^2Π^u-X^2∑g^+ system of ^15N2^+ have been recorded by using velocity modulation spectroscopy technique in the near infrared region.The rotational constants of the X^2∑g^+ and A^2Πu states of ^15N2^+ were derived from the spectroscopic data.The isotope shifts of these bands of the A^2Πu-X^2∑g^+ system of ^14N2^+ and ^15N2^+ were also analyzed and discussed.
基金supported by the Natural Science Foundation of Shandong Province (ZR2019MEE038)the Fundamental Research Funds for the Central Universities (19CX02038A)the Key R&D Program of Shandong Province (Major Scientific and Technological Innovation Project 2019JZZY020502)
文摘In this study,the nitrogen removal performance of partial denitrificaiton/anammox(PDA)process was investigated by using an UASB reactor.High total nitrogen(TN)removal efficiency(91.97%)was achieved at an influent nitrogen loading rate of 0.64 kg/(m3·d).Anammox bacteria did execute the function of converting nitrate to nitrite in PDA system according to ^(15)N isotope labeling experiments and the contribution was approximately 36.3%.Candidatus_Brocadia,Candidatus_Kuenenia and Thauera were functional strains for anammox and denitrification process,respectively.Thauera and Candidatus_Brocadia were more important for TN removal at high loading rates(0.64 kg/(m3·d)).This result can provide a theoretical and technical foundation for the application of the PDA process.
基金the Higher Education Commission Pakistan for funding the lab research under its International Research Support Initiative Program (IRSIP) programthe Department of Environmental Science, Quaid-i-Azam University, Islamabad (especially Environmental Hydro geochemistry Lab)the Environment & Sustainability Institute and Camborne School of Mines, University of Exeter, for technical support in conducting lab analysis
文摘The Paleocene coals of the Salt Range in the Punjab Province of Pakistan have great economic potential;however,their trace element and stable isotopic characteristics have not been studied in detail except for a few sporadic samples.In this study,a total of 59 coal samples of which 14 are obtained from open cast mines have been investigated for elemental composition andδ^(13)C-δ^(15)N isotopic signatures.Average contents of trace elements such as Co,Cr,Cu,Pb,Sr,Th,U,V,and Zn are 7.4,41.7,11.2,12.5,90.2,4.0,1.9,128,and 31.1 mg/kg,respectively.These values,when compared with the World Coal Clarke values,were relatively higher in low-rank coals in comparison with Clarke values for brown coals.Likewise,As(20.4 mg/kg),Co(6.6 mg/kg),Cr(22.4 mg/kg),Cu(^(13).3 mg/kg),Pb(19.2 mg/kg),Sr(^(15)4.7 mg/kg),Th(2.5 mg/kg),V(47.8 mg/kg),and Zn(75.1 mg/kg)were significantly higher in the sub-bituminous to bituminous coals of the Salt Range.Mineralogical analysis,based on X-ray diffraction and energy dispersive X-ray spectroscopy,revealed that the studied samples contain illite,kaolinite calcite,gypsum,pyrite,and quartz.Elemental affinity with organic and inorganic phases of coals calculated by an indirect statistical approach indicated a positive association of ash content with Ag,Al,Co,Cr,Cs,Cu,Mn,P,Rb,Pb,Th,U,and V,suggesting the presence of inorganic components in studied coals.However,As,Fe,Sr,and Zn exhibit negative correlations that imply their association with the organic fraction.Theδ^(13)C andδ^(15)N isotopic range and average−24.94‰to−25.86‰(−25.41‰)and−2.77‰to 3.22‰(0.96‰),respectively,reflecting 3C type modern terrestrial vegetation were common in the palaeomires of studied coal seams.In addition,the trivial variations of 0.92‰and 0.45‰among^(13)C and^(15)N values can be attributed to water level fluctuations and plant assemblies.
基金Supported by the Special Research Fund for the National Non-profit Institutes (East China Sea Fishery Research Institute) (No. 2007M03)Shanghai Jingshan City Beach Management Co. Ltd, and the National Basic Research Program of China (973 Program) (No.2010CB429005)
文摘Stable isotope values, δ13C and δ15N, were determined for four primary producers and 19 dominant consumers in a small artificial lagoon located in Hangzhou Bay. Based on these results the major pathways for energy flow and trophic structure of the artificial lagoon ecosystem were characterized. The mean δ13C values for the 19 consumers ranged from -22.99‰ to -14.24‰. Apart from so-iny mullet Liza haematocheila, the other 18 consumers had intermediate δ13C values between those of epibenthic microalgae and particulate organic matter (POM). The results of a multiple source linear mixing model (IsoSource model) indicated that 50% or more of the organic carbon in the tissues of most consumers was derived from epibenthic microalgae. This indicated that these primary producers were the main food source fueling the lagoon food web. The mean δ15N values for the 19 consumers varied between 4.93‰ and 12.97‰ and indicated four trophic levels in the lagoon. Four macroinvertebrates and zooplankton represented the primary consumers, whilst the other 14 consumers occupied the secondary and tertiary consumer levels. The 19 consumers were divided into three trophic guilds (detritivores/suspension feeders, omnivores and carnivores).
基金National Natural Science Foundation of China (3026005430660085)+1 种基金Key Project of Guangxi Academy of Agricultural Sciences (2004002)Natural Science Foundation in Guangxi Zhuang Autonomous Region (0639011)~~
文摘[ Objective] The study aimed to reveal the biological nitrogen fixation capacity by sugarcane from Brazil under the ecological conditions of Guangxi, and to provide reference for study on the biological nitrogen fixation capacity by sugarcane and related generalization and application. [ Method] The ^15N isotopic fertilizer was solely applied on plants of three sugarcane cultivars planted in greenhouse with no other fertilizer forms applied, meanwhile virus-free stem seedling was regarded as control, to measure their biological nitrogen fixation capacity using ^15N isotope. [ Result ] The nitrogen fixation rate of B8 from Brazil reached 26.91%, while Guitang 11 and RIC16 presented no or poor nitrogen fixation capacity. [ Conclusion] The sugarcane eultivar B8 from Brazil showed some nitrogen fixation capacity under the ecological conditions of Guangxi.