It is required in the diagonally loaded robust adaptive beamforming the automatic determination of the loading level which is practically a challenging problem.A constant modulus restoral method is herein presented to...It is required in the diagonally loaded robust adaptive beamforming the automatic determination of the loading level which is practically a challenging problem.A constant modulus restoral method is herein presented to choose the diagonal loading level adaptively for the extraction of a desired signal with constant modulus(a common feature of the phase modulation signals).By introducing the temporal smoothing technique,the proposed constant modulus restoral diagonally loaded robust adaptive beamformer provides increased capability compared with some existing robust adaptive beamformers in rejecting interferences and noise while protecting the signal-of-interest.Simulation results are included to illustrate the performance of the proposed beamformer.展开更多
Most of the reconstruction-based robust adaptive beamforming(RAB)algorithms require the covariance matrix reconstruction(CMR)by high-complexity integral computation.A Gauss-Legendre quadrature(GLQ)method with the high...Most of the reconstruction-based robust adaptive beamforming(RAB)algorithms require the covariance matrix reconstruction(CMR)by high-complexity integral computation.A Gauss-Legendre quadrature(GLQ)method with the highest algebraic precision in the interpolation-type quadrature is proposed to reduce the complexity.The interference angular sector in RAB is regarded as the GLQ integral range,and the zeros of the threeorder Legendre orthogonal polynomial is selected as the GLQ nodes.Consequently,the CMR can be efficiently obtained by simple summation with respect to the three GLQ nodes without integral.The new method has significantly reduced the complexity as compared to most state-of-the-art reconstruction-based RAB techniques,and it is able to provide the similar performance close to the optimal.These advantages are verified by numerical simulations.展开更多
为降低实际应用中由强未知干扰和仪器故障对观测造成的影响,减轻随机和未建模干扰对系统的侵蚀,从而提升系统在非高斯噪声环境下的状态估计精度,提高滤波器的鲁棒性能,提出了一种基于高斯-重尾切换分布的鲁棒卡尔曼滤波器(Gaussian-heav...为降低实际应用中由强未知干扰和仪器故障对观测造成的影响,减轻随机和未建模干扰对系统的侵蚀,从而提升系统在非高斯噪声环境下的状态估计精度,提高滤波器的鲁棒性能,提出了一种基于高斯-重尾切换分布的鲁棒卡尔曼滤波器(Gaussian-heavy-tailed switching distribution based robust Kalman filter,GHTSRKF)。首先,通过自适应学习高斯分布和一种重尾分布之间的切换概率将噪声建模为GHTS(Gaussian-heavy-tailed switching)分布,所设计的GHTS分布可以通过在线调整高斯分布和新的重尾分布之间的切换概率来对非平稳重尾噪声进行建模,具有虚拟协方差的高斯分布用于处理协方差矩阵不准确的高斯噪声。其次,引入两个分别服从Categorical分布与伯努利分布的辅助参数将GHTS分布表示为一个分层高斯形式,进一步利用变分贝叶斯方法推导了GHTSRKF。最后,利用一个仿真场景对几种不同的RKFs(robust Kalman filters)进行了对比验证。结果表明,所提出的GHTSRKF算法的估计精度对初始状态的选取不敏感,精度优于其他RKFs,它的RMSEs最接近噪声信息准确的KFTNC(KF with true noise covariances)的RMSEs(root mean square errors),且当系统与量测噪声是未知时变高斯噪声时,相比于现有的滤波器,GHTSRKF具有更好的估计性能,从而验证了GHTSRKF的有效性。展开更多
In wideband multi-pair two-way relay networks, the performance of beamforming at a relay station(RS) is intimately related to the accuracy of the channel state information(CSI) available. The accuracy of CSI is determ...In wideband multi-pair two-way relay networks, the performance of beamforming at a relay station(RS) is intimately related to the accuracy of the channel state information(CSI) available. The accuracy of CSI is determined by Doppler spread, delay between beamforming and channel estimation, and density of pilot symbols,including transmit power of pilot symbols. The coefficient of the Gaussian-Markov CSI error model is modeled as a function of CSI delay, Doppler spread, and signal-to-noise ratio, and can be estimated in real time. In accordance with the real-time estimated coefficients of the error model, an adaptive robust maximum signal-to-interferenceand-noise ratio(Max-SINR) plus maximum signal-to-leakage-and-noise ratio(Max-SLNR) beamformer at an RS is proposed to track the variation of the CSI error. From simulation results and analysis, it is shown that: compared to existing non-adaptive beamformers, the proposed adaptive beamformer is more robust and performs much better in the sense of bit error rate(BER); with increase in the density of transmit pilot symbols, its BER and sum-rate performances tend to those of the beamformer of Max-SINR plus Max-SLNR with ideal CSI.展开更多
The performance of adaptive array beamform-ing algorithms substantially degrades in practice because of a slight mismatch between actual and presumed array res-ponses to the desired signal.A novel robust adaptive beam...The performance of adaptive array beamform-ing algorithms substantially degrades in practice because of a slight mismatch between actual and presumed array res-ponses to the desired signal.A novel robust adaptive beam-forming algorithm based on Bayesian approach is therefore proposed.The algorithm responds to the current envi-ronment by estimating the direction of arrival(DOA)of the actual signal from observations.Computational com-plexity of the proposed algorithm can thus be reduced com-pared with other algorithms since the recursive method is used to obtain inverse matrix.In addition,it has strong robustness to the uncertainty of actual signal DOA and makes the mean output array signal-to-interference-plus-noise ratio(SINR)consistently approach the optimum.Simulation results show that the proposed algorithm is bet-ter in performance than conventional adaptive beamform-ing algorithms.展开更多
基金Supported by the National Natural Science Foundation of China(No.61490691,61331019)
文摘It is required in the diagonally loaded robust adaptive beamforming the automatic determination of the loading level which is practically a challenging problem.A constant modulus restoral method is herein presented to choose the diagonal loading level adaptively for the extraction of a desired signal with constant modulus(a common feature of the phase modulation signals).By introducing the temporal smoothing technique,the proposed constant modulus restoral diagonally loaded robust adaptive beamformer provides increased capability compared with some existing robust adaptive beamformers in rejecting interferences and noise while protecting the signal-of-interest.Simulation results are included to illustrate the performance of the proposed beamformer.
基金supported by the National Natural Science Foundation of China(618711496197115962071144)。
文摘Most of the reconstruction-based robust adaptive beamforming(RAB)algorithms require the covariance matrix reconstruction(CMR)by high-complexity integral computation.A Gauss-Legendre quadrature(GLQ)method with the highest algebraic precision in the interpolation-type quadrature is proposed to reduce the complexity.The interference angular sector in RAB is regarded as the GLQ integral range,and the zeros of the threeorder Legendre orthogonal polynomial is selected as the GLQ nodes.Consequently,the CMR can be efficiently obtained by simple summation with respect to the three GLQ nodes without integral.The new method has significantly reduced the complexity as compared to most state-of-the-art reconstruction-based RAB techniques,and it is able to provide the similar performance close to the optimal.These advantages are verified by numerical simulations.
文摘为降低实际应用中由强未知干扰和仪器故障对观测造成的影响,减轻随机和未建模干扰对系统的侵蚀,从而提升系统在非高斯噪声环境下的状态估计精度,提高滤波器的鲁棒性能,提出了一种基于高斯-重尾切换分布的鲁棒卡尔曼滤波器(Gaussian-heavy-tailed switching distribution based robust Kalman filter,GHTSRKF)。首先,通过自适应学习高斯分布和一种重尾分布之间的切换概率将噪声建模为GHTS(Gaussian-heavy-tailed switching)分布,所设计的GHTS分布可以通过在线调整高斯分布和新的重尾分布之间的切换概率来对非平稳重尾噪声进行建模,具有虚拟协方差的高斯分布用于处理协方差矩阵不准确的高斯噪声。其次,引入两个分别服从Categorical分布与伯努利分布的辅助参数将GHTS分布表示为一个分层高斯形式,进一步利用变分贝叶斯方法推导了GHTSRKF。最后,利用一个仿真场景对几种不同的RKFs(robust Kalman filters)进行了对比验证。结果表明,所提出的GHTSRKF算法的估计精度对初始状态的选取不敏感,精度优于其他RKFs,它的RMSEs最接近噪声信息准确的KFTNC(KF with true noise covariances)的RMSEs(root mean square errors),且当系统与量测噪声是未知时变高斯噪声时,相比于现有的滤波器,GHTSRKF具有更好的估计性能,从而验证了GHTSRKF的有效性。
基金Project supported by the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University,China(No.2013D02)the Open Research Fund of National Key Laboratory of Electromagnetic Environment,China Research Institute of Radiowave Propagation(No.201500013)+2 种基金the National Natural Science Foundation of China(Nos.61271230,61472190,and 61501238)the Research Fund for the Doctoral Program of Higher Education of China(No.20113219120019)the Jiangsu Provincial Science Foundation Project,China(No.BK20150786)
文摘In wideband multi-pair two-way relay networks, the performance of beamforming at a relay station(RS) is intimately related to the accuracy of the channel state information(CSI) available. The accuracy of CSI is determined by Doppler spread, delay between beamforming and channel estimation, and density of pilot symbols,including transmit power of pilot symbols. The coefficient of the Gaussian-Markov CSI error model is modeled as a function of CSI delay, Doppler spread, and signal-to-noise ratio, and can be estimated in real time. In accordance with the real-time estimated coefficients of the error model, an adaptive robust maximum signal-to-interferenceand-noise ratio(Max-SINR) plus maximum signal-to-leakage-and-noise ratio(Max-SLNR) beamformer at an RS is proposed to track the variation of the CSI error. From simulation results and analysis, it is shown that: compared to existing non-adaptive beamformers, the proposed adaptive beamformer is more robust and performs much better in the sense of bit error rate(BER); with increase in the density of transmit pilot symbols, its BER and sum-rate performances tend to those of the beamformer of Max-SINR plus Max-SLNR with ideal CSI.
基金was supported by the Specialized Research Fund for the Doctoral Program of Higher Education(No.20050145019)Directive Plan of Science Research from the Bureau of Education of Hebei Province(No.Z 2004103).
文摘The performance of adaptive array beamform-ing algorithms substantially degrades in practice because of a slight mismatch between actual and presumed array res-ponses to the desired signal.A novel robust adaptive beam-forming algorithm based on Bayesian approach is therefore proposed.The algorithm responds to the current envi-ronment by estimating the direction of arrival(DOA)of the actual signal from observations.Computational com-plexity of the proposed algorithm can thus be reduced com-pared with other algorithms since the recursive method is used to obtain inverse matrix.In addition,it has strong robustness to the uncertainty of actual signal DOA and makes the mean output array signal-to-interference-plus-noise ratio(SINR)consistently approach the optimum.Simulation results show that the proposed algorithm is bet-ter in performance than conventional adaptive beamform-ing algorithms.