Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis...Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis technology for the advantage in the sustainable production of high-value-added products,and the high efficiency in pollutants remediation.Although there is plenty of outstanding research has been put forward continuously,most of them focuses on catalysis performance and reaction mechanisms in laboratory conditions.Realizing industrial application of photo/electrocatalytic processes is still a challenge that needs to be overcome by social demand.In this regard,this review comprehensively summarized several explorations in thefield of photo/electrocatalytic reduction towards potential industrial applications in recent years.Special attention is paid to the successful attempts and the current status of photo/electrocatalytic water splitting,carbon dioxide conversion,resource utilization from waste,etc.,by using advanced reactors.The key problems and challenges of photo/electrocatalysis in future industrial practice are also discussed,and the possible development directions are also pointed out from the industry view.展开更多
Embedded memory,which heavily relies on the manufacturing process,has been widely adopted in various industrial applications.As the field of embedded memory continues to evolve,innovative strategies are emerging to en...Embedded memory,which heavily relies on the manufacturing process,has been widely adopted in various industrial applications.As the field of embedded memory continues to evolve,innovative strategies are emerging to enhance performance.Among them,resistive random access memory(RRAM)has gained significant attention due to its numerousadvantages over traditional memory devices,including high speed(<1 ns),high density(4 F^(2)·n^(-1)),high scalability(~nm),and low power consumption(~pJ).This review focuses on the recent progress of embedded RRAM in industrial manufacturing and its potentialapplications.It provides a brief introduction to the concepts and advantages of RRAM,discusses the key factors that impact its industrial manufacturing,and presents the commercial progress driven by cutting-edge nanotechnology,which has been pursued by manysemiconductor giants.Additionally,it highlights the adoption of embedded RRAM in emerging applications within the realm of the Internet of Things and future intelligent computing,with a particular emphasis on its role in neuromorphic computing.Finally,the review discusses thecurrent challenges and provides insights into the prospects of embedded RRAM in the era of big data and artificial intelligence.展开更多
Limestone is one of the essential raw materials in the cement,paint,steel,ceramic,glass,chemical,pharmaceutical,paper,and fertilizer industries.In India,only 8%of the limestone resources are placed under the reserve c...Limestone is one of the essential raw materials in the cement,paint,steel,ceramic,glass,chemical,pharmaceutical,paper,and fertilizer industries.In India,only 8%of the limestone resources are placed under the reserve category,of which 97%is of cement grade.Thus,India depends on imports to bridge the demand‐supply gap of steel,blast furnace,and chemical‐grade limestone.Efforts of Geological Survey of India(GSI)to locate alternate sources for limestone led to the discovery of enormous quantities of carbonate minerals called limemud from the continental shelf margin of the west coast of India.GSI carried out systematic studies to explore the nature of the disposition,quality,quantity,and suitability of the offshore limemud for various industrial applications.A preliminary estimate of resources using high‐resolution subbottom profiling and sediment core sample studies established the occurrence of more than 172 billion tonnes of high‐grade(The content of CaCO3 is greater than 80 wt%)limemud in 0.4–28.0m thick stratified sediment layers spread over an area of 18000 km2.Chemical,physical,mineralogical,beneficiation,and agglomeration studies found the offshore limemud as a potential replacement for limestone in the cement,filler,blast furnace,steel melting shop,lime production,paint,and Grade‐I steel industries.An assessment of mining and transportation costs indicates that the offshore limemud(USD 5–6/ton)is more cost‐effective than that imported from other countries(USD16‐18/ton).With several advantageous factors like low impurity,mode of occurrence in overburden‐free stratified form,fine‐grained slurry nature,and shallow water depth,sustainable mining of offshore limemud could be a future reality with controllable technological,economic,and environmental challenges.展开更多
Excessive waste production has led to the concept of a circular bioeconomy to deliver valuable by-products and improve environmental sustainability.The annual worldwide rice production accounts for more than 750 milli...Excessive waste production has led to the concept of a circular bioeconomy to deliver valuable by-products and improve environmental sustainability.The annual worldwide rice production accounts for more than 750 million tons of grain and 150 million tons of husk.Rice husk(RH)contains valuable biomaterials with extensive applications in various fields.The proportions of each component depend primarily on rice genotype,soil chemistry,and climatic conditions.RH and its derivatives,including ash,biochar,hydrochar,and activated carbon have been placed foreground of applications in agriculture and other industries.While the investigation on RH’s compositions,microstructures,and by-products has been done copiously,owing to its unique features,it is still an open-ended area with enormous scope for innovation,research,and technology.Here,we reviewed the latest applications of RH and its derivatives,including fuel and other energy resources,construction materials,pharmacy,medicine,and nanobiotechnology to keep this versatile biomaterial in the spotlight.展开更多
Several rheocasting processes are developed or applied worldwide in the metal forming industry.One of the new rheocasting processes is the gas induced semi-solid(GISS) process.The GISS process utilizes the principle o...Several rheocasting processes are developed or applied worldwide in the metal forming industry.One of the new rheocasting processes is the gas induced semi-solid(GISS) process.The GISS process utilizes the principle of rapid heat extraction and vigorous local extraction using the injection of fine gas bubbles through a graphite diffuser.Several forming processes such as die casting,squeeze casting,gravity casting,and rheo-extrusion of the semi-solid slurries prepared by the GISS process have also been conducted.The GISS process is capable of processing various alloys including cast aluminum alloys,die casting aluminum alloys,wrought aluminum alloys,and zinc alloys.The GISS process is currently developed to be used commercially in the industry with the focus on forming semi-solid slurries containing low fractions solid(< 0.25) into parts.The research and development activities of the GISS process were discussed and the status of the industrial developments of this process was reported.展开更多
Recently,research on the electrocatalytic CO_(2) reduction reaction(eCO_(2)RR)has attracted considerable attention due to its potential to resolve environmental problems caused by CO_(2) while utilizing clean energy a...Recently,research on the electrocatalytic CO_(2) reduction reaction(eCO_(2)RR)has attracted considerable attention due to its potential to resolve environmental problems caused by CO_(2) while utilizing clean energy and producing high‐value‐added products.Considerable theoretical research in the lab has demonstrated its feasibility and prospect.However,industrialization is mandatory to realize the economic and social value of eCO_(2)RR.For industrial application of eCO_(2)RR,more criteria have been proposed for eCO_(2)RR research,including high current density(above 200 mA cm^(−2)),high product selectivity(above 90%),and long‐term stability.To fulfill these criteria,the eCO_(2)RR system needs to be systematically designed and optimized.In this review,recent research on eCO_(2)RR for industrial applications is summarized.The review starts with focus on potential industrial catalysts in eCO_(2)RR.Next,potential industrial products are proposed in eCO_(2)RR.These products,including carbon monoxide,formic acid,ethylene,and ethanol,all have high market demand,and have shown high current density and product selectivity in theoretical research.Notably,the innovative components and strategy for industrializing the eCO_(2)RR system are also highlighted here,including flow cells,seawater electrolytes,solid electrolytes,and a two‐step method.Finally,some instructions and possible future avenues are presented for the prospects of future industrial application of eCO_(2)RR.展开更多
Bauxite residue is a highly alkaline material generated from the production of alumina in which bauxite is dissolved in caustic soda.Approximately 4.4 billion tons of bauxite residues are either stockpiled or landfill...Bauxite residue is a highly alkaline material generated from the production of alumina in which bauxite is dissolved in caustic soda.Approximately 4.4 billion tons of bauxite residues are either stockpiled or landfilled,creating environmental risks either from the generation of dust or migration of filtrates.High alkalinity is the critical factor restricting complete utilization of bauxite residues,whilst the application of alkaline regulation agents is costly and difficult to apply widely.For now,current industrial wastes,such as waste acid,ammonia nitrogen wastewater,waste gypsum and biomass,have become major problems restricting the development of the social economy.Regulation of bauxite residues alkalinity by industrial waste was proposed to achieve‘waste control by waste’with good economic and ecological benefits.This review will focus on the origin and transformation of alkalinity in bauxite residues using typical industrial waste.It will propose key research directions with an emphasis on alkaline regulation by industrial waste,whilst also providing a scientific reference point for their potential use as amendments to enhance soil formation and establish vegetation on bauxite residue disposal areas(BRDAs)following large-scale disposal.展开更多
Extensive research work including multiple methodologies and numerous simulations have been completed in order to determine the economic effectiveness of employing CHP at commercial and residential sites. In contrast ...Extensive research work including multiple methodologies and numerous simulations have been completed in order to determine the economic effectiveness of employing CHP at commercial and residential sites. In contrast to the above, very few attempts have been made to develop methodologies to study the feasibility of CHP systems at industrial manufacturing facilities. As a result, practical opportunities for CHP at industrial sites are often not realized or even investigated. It follows that there is a need in the CHP related literature for an analysis that is explicit and yet general enough to determine the economic viability and potential for success of CHP systems at industrial manufacturing facilities. Therefore, the purpose of this paper is to clearly outline a methodology to determine the economic effectiveness of installation and operation of a CHP system at industrial facilities that have a need for space or process heating in the form of steam. The effect on the CHP system economic performance of several parameters, such as the project payback, internal rate of return, net present value, etc., are considered in the proposed methodology. The applicability and generality of the methodology is illustrated by examples including four different manufacturing facilities. The effects of the variability of factors such as annual facility operational hours during which both process heat and electricity are needed, facility average hourly thermal load, cost of utility supplied electricity, and CHP fuel type and associated fuel cost, on the outcome of the economic analysis are also examined.展开更多
Electrochemical water splitting represents one of the most promising technologies to produce green hydrogen,which can help to realize the goal of achieving carbon neutrality.While substantial efforts on a laboratory s...Electrochemical water splitting represents one of the most promising technologies to produce green hydrogen,which can help to realize the goal of achieving carbon neutrality.While substantial efforts on a laboratory scale have been made for understanding fundamental catalysis and developing high-performance electrocatalysts for the two half-reactions involved in water electrocatalysis,much less attention has been paid to doing relevant research on a larger scale.For example,few such researches have been done on an industrial scale.Herein,we review the very recent endeavors to bridge the gaps between fundamental research and industrial applications for water electrolysis.We begin by introducing the fundamentals of electrochemical water splitting and then present comparisons of testing protocol,figure of merit,catalyst of interest,and manufacturing cost for laboratory and industry-based water-electrolysis research.Special attention is paid to tracking the surface reconstruction process and identifying real catalytic species under different testing conditions,which highlight the significant distinctions of corresponding electrochemical reconstruction mechanisms.Advances in catalyst designs for industry-relevant water electrolysis are also summarized,which reveal the progress of moving the practical applications forward and accelerating synergies between material science and engineering.Perspectives and challenges of electrocatalyst design strategies are proposed finally to further bridge the gaps between lab-scale research and large-scale electrocatalysis applications.展开更多
Upon the view of this work, industrial floor is a vital structure due to its relation to quality of production, labor comfort, and human health. Flooring costs may reach 20% of single-story building construction expen...Upon the view of this work, industrial floor is a vital structure due to its relation to quality of production, labor comfort, and human health. Flooring costs may reach 20% of single-story building construction expenditure, and the consumption of concrete for floors may come to 40% - 50% of the total size of concrete. Thereby, the efficient design of floor will reduce materials consumption and labor, and will increase the endurance of the floor. Fiber reinforcement reduces the thickness of the subfloor about 20% - 30%, hence enabling to reduce the consumption of cement and fillers. The use of fiber meshes will enable to save 30% - 40% of steel. Despite the flexible use of fiber in concrete reinforcement saves effort and money, still fiber reinforced concrete is lacking additional regulations in Jordan.展开更多
The Industrial Internet of Things(IIoT)has been growing for presentations in industry in recent years.Security for the IIoT has unavoidably become a problem in terms of creating safe applications.Due to continual need...The Industrial Internet of Things(IIoT)has been growing for presentations in industry in recent years.Security for the IIoT has unavoidably become a problem in terms of creating safe applications.Due to continual needs for new functionality,such as foresight,the number of linked devices in the industrial environment increases.Certification of fewer signatories gives strong authentication solutions and prevents trustworthy third parties from being publicly certified among available encryption instruments.Hence this blockchain-based endpoint protection platform(BCEPP)has been proposed to validate the network policies and reduce overall latency in isolation or hold endpoints.A resolver supports the encoded model as an input;network functions can be optimized as an output in an infrastructure network.The configuration of the virtual network functions(VNFs)involved fulfills network characteristics.The output ensures that the final service is supplied at the least cost,including processing time and network latency.According to the findings of this comparison,our design is better suited to simplified trust management in IIoT devices.Thus,the experimental results show the adaptability and resilience of our suggested confidence model against behavioral changes in hostile settings in IIoT networks.The experimental results show that our proposed method,BCEPP,has the following,when compared to other methods:high computational cost of 95.3%,low latency ratio of 28.5%,increased data transmitting rate up to 94.1%,enhanced security rate of 98.6%,packet reception ratio of 96.1%,user satisfaction index of 94.5%,and probability ratio of 33.8%.展开更多
After a brief introduction regarding the different approaches to superhard coatings we shall concentrate on the problem of the reproducibility of the deposition of superhard and thermally very stable nanocomposites ac...After a brief introduction regarding the different approaches to superhard coatings we shall concentrate on the problem of the reproducibility of the deposition of superhard and thermally very stable nanocomposites according to the design principle published by Veprek and Reiprich in 1995. It will be shown that either the choice of inappropriate deposition conditions, in contradiction to our design principle, or impurities in the coatings are the reason for the lack of reproducibility of our earlier results by many other workers. We shall also briefly summarize the recent industrial applications.展开更多
The main aim of this work is to study the possibility of using different Emirati limestones for the production of quicklime. Representative limestone samples have been collected to represent the Triassic, Jurassic, Cr...The main aim of this work is to study the possibility of using different Emirati limestones for the production of quicklime. Representative limestone samples have been collected to represent the Triassic, Jurassic, Cretaceous, Eocene and Oligocene ages. The limestone samples have been characterized for their microstructure, mineral and chemical composition, physico-mechanical characteristics, thermal behavior using polarizing and scanning microscopes together with X-ray micro-tomography, XRD-IR, XRF, Archimedes and Mercury intrusion methods and DTA-TGA, respectively. Post characterization, the samples were fired in electrical muffle furnace for calcination under the firing conditions (800℃ to 1100℃) for (0.25 – 2 h). Then the lime grains have been characterized for their hydration rate, free lime content, pore-distribution and microfabric.展开更多
This paper presents a general view on up to date and future industrial applications of Rare Earths in the Hi-Tech field in Japan , mainly concerning magnets and rechargeable batteries .
Research on high temperature wear mechanism shows that the oxidation and corrosion resistance, high temperature hardness, thermal fatigue resistance and structure stability are main control factors for Ni_3Al based al...Research on high temperature wear mechanism shows that the oxidation and corrosion resistance, high temperature hardness, thermal fatigue resistance and structure stability are main control factors for Ni_3Al based alloys. Some important workpieces have been produced in mass quantity such as the guide shoe used in wire hot rolling. Ni_3Al based alloys could be used as cavitation erosion resistant materials mainly because of their high temperature mechanical properties, high work hardening ability and fatigue resistance. The weld electrode of Ni_3Al based alloy has been fabricated and used in the protection against cavitation erosion of big blade of hydraulic turbine in Sanmenxia Hydropower Station. Ni_3Al based alloys exhibit superproperties in the situation of high temperature over 1200℃, for example, in the work condition of flame tube of jet. Some of rivets used in combustor of jet are fabricated and tested.展开更多
Virtual Reality(VR)has been around for a long time but has come into the spotlight only recently.From an industrial perspective,this article serves as a proverbial scalpel to dissect the different use cases and commer...Virtual Reality(VR)has been around for a long time but has come into the spotlight only recently.From an industrial perspective,this article serves as a proverbial scalpel to dissect the different use cases and commercial applications of VR in Singapore.Before researching the Singapore market,we examine how VR has evolved.At the moment,the global annual budget for VR(and augmented reality)is at an upward trend with a leading growth in market value for the training sector.VR in Singapore has also seen a rapid development in recent years.We discuss some of the Singapore government's initiatives to promote the commercial adoption of VR for the digital economy of the nation.To address the mass adoption of VR,we present VRcollab's business solutions for the construction and building industry.2020 is one of the most important years for VR in history.展开更多
Flexible sensors based on MXene-polymer composites are highly prospective for next-generation wearable electronics used in human-machine interfaces.One of the motivating factors behind the progress of flexible sensors...Flexible sensors based on MXene-polymer composites are highly prospective for next-generation wearable electronics used in human-machine interfaces.One of the motivating factors behind the progress of flexible sensors is the steady arrival of new conductive materials.MXenes,a new family of 2D nanomaterials,have been draw-ing attention since the last decade due to their high electronic conduc-tivity,processability,mechanical robustness and chemical tunability.In this review,we encompass the fabrication of MXene-based polymeric nanocomposites,their structure-property relationship,and applications in the flexible sensor domain.Moreover,our discussion is not only lim-ited to sensor design,their mechanism,and various modes of sensing platform,but also their future perspective and market throughout the world.With our article,we intend to fortify the bond between flexible matrices and MXenes thus promoting the swift advancement of flexible MXene-sensors for wearable technologies.展开更多
In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to im...In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to improve IIoT service efficiency.There are two types of costs for this kind of IoT network:a communication cost and a computing cost.For service efficiency,the communication cost of data transmission should be minimized,and the computing cost in the edge cloud should be also minimized.Therefore,in this paper,the communication cost for data transmission is defined as the delay factor,and the computing cost in the edge cloud is defined as the waiting time of the computing intensity.The proposed method selects an edge cloud that minimizes the total cost of the communication and computing costs.That is,a device chooses a routing path to the selected edge cloud based on the costs.The proposed method controls the data flows in a mesh-structured network and appropriately distributes the data processing load.The performance of the proposed method is validated through extensive computer simulation.When the transition probability from good to bad is 0.3 and the transition probability from bad to good is 0.7 in wireless and edge cloud states,the proposed method reduced both the average delay and the service pause counts to about 25%of the existing method.展开更多
The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables...The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables energy harvesting from sources such as water,wind,and sound.In this review,we provide an overview of the coexistence of electron and ion transfer in the CE process.We elucidate the diverse dominant mechanisms observed at different interfaces and emphasize the interconnectedness and complementary nature of interface studies.The review also offers a comprehensive summary of the factors influencing charge transfer and the advancements in interfacial modification techniques.Additionally,we highlight the wide range of applications stemming from the distinctive characteristics of charge transfer at various interfaces.Finally,this review elucidates the future opportunities and challenges that interface CE may encounter.We anticipate that this review can offer valuable insights for future research on interface CE and facilitate the continued development and industrialization of TENG.展开更多
基金supported by the National Natural Science Foundation of China(22278030,22090032,22090030,22288102,22242019)the Fundamental Research Funds for the Central Universities(buctrc202119,2312018RC07)+1 种基金Major Program of Qingyuan Innovation Laboratory(Grant No.001220005)the Experiments for Space Exploration Program and the Qian Xuesen Laboratory,China Academy of Space Technology。
文摘Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis technology for the advantage in the sustainable production of high-value-added products,and the high efficiency in pollutants remediation.Although there is plenty of outstanding research has been put forward continuously,most of them focuses on catalysis performance and reaction mechanisms in laboratory conditions.Realizing industrial application of photo/electrocatalytic processes is still a challenge that needs to be overcome by social demand.In this regard,this review comprehensively summarized several explorations in thefield of photo/electrocatalytic reduction towards potential industrial applications in recent years.Special attention is paid to the successful attempts and the current status of photo/electrocatalytic water splitting,carbon dioxide conversion,resource utilization from waste,etc.,by using advanced reactors.The key problems and challenges of photo/electrocatalysis in future industrial practice are also discussed,and the possible development directions are also pointed out from the industry view.
基金supported by the Key-Area Research and Development Program of Guangdong Province(Grant No.2021B0909060002)National Natural Science Foundation of China(Grant Nos.62204219,62204140)+1 种基金Major Program of Natural Science Foundation of Zhejiang Province(Grant No.LDT23F0401)Thanks to Professor Zhang Yishu from Zhejiang University,Professor Gao Xu from Soochow University,and Professor Zhong Shuai from Guangdong Institute of Intelligence Science and Technology for their support。
文摘Embedded memory,which heavily relies on the manufacturing process,has been widely adopted in various industrial applications.As the field of embedded memory continues to evolve,innovative strategies are emerging to enhance performance.Among them,resistive random access memory(RRAM)has gained significant attention due to its numerousadvantages over traditional memory devices,including high speed(<1 ns),high density(4 F^(2)·n^(-1)),high scalability(~nm),and low power consumption(~pJ).This review focuses on the recent progress of embedded RRAM in industrial manufacturing and its potentialapplications.It provides a brief introduction to the concepts and advantages of RRAM,discusses the key factors that impact its industrial manufacturing,and presents the commercial progress driven by cutting-edge nanotechnology,which has been pursued by manysemiconductor giants.Additionally,it highlights the adoption of embedded RRAM in emerging applications within the realm of the Internet of Things and future intelligent computing,with a particular emphasis on its role in neuromorphic computing.Finally,the review discusses thecurrent challenges and provides insights into the prospects of embedded RRAM in the era of big data and artificial intelligence.
基金Geological Survey of India(Data collected as part of annual field programme of Geological Survey of India,Ministry of Mines,Government of India)。
文摘Limestone is one of the essential raw materials in the cement,paint,steel,ceramic,glass,chemical,pharmaceutical,paper,and fertilizer industries.In India,only 8%of the limestone resources are placed under the reserve category,of which 97%is of cement grade.Thus,India depends on imports to bridge the demand‐supply gap of steel,blast furnace,and chemical‐grade limestone.Efforts of Geological Survey of India(GSI)to locate alternate sources for limestone led to the discovery of enormous quantities of carbonate minerals called limemud from the continental shelf margin of the west coast of India.GSI carried out systematic studies to explore the nature of the disposition,quality,quantity,and suitability of the offshore limemud for various industrial applications.A preliminary estimate of resources using high‐resolution subbottom profiling and sediment core sample studies established the occurrence of more than 172 billion tonnes of high‐grade(The content of CaCO3 is greater than 80 wt%)limemud in 0.4–28.0m thick stratified sediment layers spread over an area of 18000 km2.Chemical,physical,mineralogical,beneficiation,and agglomeration studies found the offshore limemud as a potential replacement for limestone in the cement,filler,blast furnace,steel melting shop,lime production,paint,and Grade‐I steel industries.An assessment of mining and transportation costs indicates that the offshore limemud(USD 5–6/ton)is more cost‐effective than that imported from other countries(USD16‐18/ton).With several advantageous factors like low impurity,mode of occurrence in overburden‐free stratified form,fine‐grained slurry nature,and shallow water depth,sustainable mining of offshore limemud could be a future reality with controllable technological,economic,and environmental challenges.
文摘Excessive waste production has led to the concept of a circular bioeconomy to deliver valuable by-products and improve environmental sustainability.The annual worldwide rice production accounts for more than 750 million tons of grain and 150 million tons of husk.Rice husk(RH)contains valuable biomaterials with extensive applications in various fields.The proportions of each component depend primarily on rice genotype,soil chemistry,and climatic conditions.RH and its derivatives,including ash,biochar,hydrochar,and activated carbon have been placed foreground of applications in agriculture and other industries.While the investigation on RH’s compositions,microstructures,and by-products has been done copiously,owing to its unique features,it is still an open-ended area with enormous scope for innovation,research,and technology.Here,we reviewed the latest applications of RH and its derivatives,including fuel and other energy resources,construction materials,pharmacy,medicine,and nanobiotechnology to keep this versatile biomaterial in the spotlight.
基金supports from several sources including the Thai Research Fund (No. MRG5280215)Prince of Songkla University (No. AGR530031M)the Royal Golden Jubilee Ph.D. Program (No. PHD/0134/2551 and PHD/0173/2550)
文摘Several rheocasting processes are developed or applied worldwide in the metal forming industry.One of the new rheocasting processes is the gas induced semi-solid(GISS) process.The GISS process utilizes the principle of rapid heat extraction and vigorous local extraction using the injection of fine gas bubbles through a graphite diffuser.Several forming processes such as die casting,squeeze casting,gravity casting,and rheo-extrusion of the semi-solid slurries prepared by the GISS process have also been conducted.The GISS process is capable of processing various alloys including cast aluminum alloys,die casting aluminum alloys,wrought aluminum alloys,and zinc alloys.The GISS process is currently developed to be used commercially in the industry with the focus on forming semi-solid slurries containing low fractions solid(< 0.25) into parts.The research and development activities of the GISS process were discussed and the status of the industrial developments of this process was reported.
基金supported by the National Natural Science Foundation of China(Grant Nos.51873085,52071171)Liaoning Revitalization Talents Program-Pan Deng Scholars(XLYC2007056,XLYC1802005)+9 种基金the Liaoning BaiQianWan Talents Program(LNBQW2018B0048)the Natural Science Fund of Liaoning Province for Excellent Young Scholars(2019-YQ-04)the Key Project of Scientific Research of the Education Department of Liaoning Province(LZD201902)the Shenyang Science and Technology Project(21-108-9-04)the Australian Research Council(ARC)through Future Fellowship(FT210100298,FT210100806)Discovery Project(DP220100603)the Linkage Project(LP210100467,LP210200504,LP210200345)Industrial Transformation Training Centre(IC180100005)schemesthe CSIRO Energy Centrethe Kick-Start Project.
文摘Recently,research on the electrocatalytic CO_(2) reduction reaction(eCO_(2)RR)has attracted considerable attention due to its potential to resolve environmental problems caused by CO_(2) while utilizing clean energy and producing high‐value‐added products.Considerable theoretical research in the lab has demonstrated its feasibility and prospect.However,industrialization is mandatory to realize the economic and social value of eCO_(2)RR.For industrial application of eCO_(2)RR,more criteria have been proposed for eCO_(2)RR research,including high current density(above 200 mA cm^(−2)),high product selectivity(above 90%),and long‐term stability.To fulfill these criteria,the eCO_(2)RR system needs to be systematically designed and optimized.In this review,recent research on eCO_(2)RR for industrial applications is summarized.The review starts with focus on potential industrial catalysts in eCO_(2)RR.Next,potential industrial products are proposed in eCO_(2)RR.These products,including carbon monoxide,formic acid,ethylene,and ethanol,all have high market demand,and have shown high current density and product selectivity in theoretical research.Notably,the innovative components and strategy for industrializing the eCO_(2)RR system are also highlighted here,including flow cells,seawater electrolytes,solid electrolytes,and a two‐step method.Finally,some instructions and possible future avenues are presented for the prospects of future industrial application of eCO_(2)RR.
基金Projects(41877551,41842020)supported by the National Natural Science Foundation of ChinaProject(201509048)supported by the Environmental Protection’s Special Scientific Research for Chinese Public Welfare Industry
文摘Bauxite residue is a highly alkaline material generated from the production of alumina in which bauxite is dissolved in caustic soda.Approximately 4.4 billion tons of bauxite residues are either stockpiled or landfilled,creating environmental risks either from the generation of dust or migration of filtrates.High alkalinity is the critical factor restricting complete utilization of bauxite residues,whilst the application of alkaline regulation agents is costly and difficult to apply widely.For now,current industrial wastes,such as waste acid,ammonia nitrogen wastewater,waste gypsum and biomass,have become major problems restricting the development of the social economy.Regulation of bauxite residues alkalinity by industrial waste was proposed to achieve‘waste control by waste’with good economic and ecological benefits.This review will focus on the origin and transformation of alkalinity in bauxite residues using typical industrial waste.It will propose key research directions with an emphasis on alkaline regulation by industrial waste,whilst also providing a scientific reference point for their potential use as amendments to enhance soil formation and establish vegetation on bauxite residue disposal areas(BRDAs)following large-scale disposal.
文摘Extensive research work including multiple methodologies and numerous simulations have been completed in order to determine the economic effectiveness of employing CHP at commercial and residential sites. In contrast to the above, very few attempts have been made to develop methodologies to study the feasibility of CHP systems at industrial manufacturing facilities. As a result, practical opportunities for CHP at industrial sites are often not realized or even investigated. It follows that there is a need in the CHP related literature for an analysis that is explicit and yet general enough to determine the economic viability and potential for success of CHP systems at industrial manufacturing facilities. Therefore, the purpose of this paper is to clearly outline a methodology to determine the economic effectiveness of installation and operation of a CHP system at industrial facilities that have a need for space or process heating in the form of steam. The effect on the CHP system economic performance of several parameters, such as the project payback, internal rate of return, net present value, etc., are considered in the proposed methodology. The applicability and generality of the methodology is illustrated by examples including four different manufacturing facilities. The effects of the variability of factors such as annual facility operational hours during which both process heat and electricity are needed, facility average hourly thermal load, cost of utility supplied electricity, and CHP fuel type and associated fuel cost, on the outcome of the economic analysis are also examined.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)supported by National R&D Program through the National Research Foundation of Korea(NRF),grant number 2021M3H4A1A01079300the Korea Research Institute of Chemical Technology Core Research Program funded by the Korea Research Council for Industrial Science and Technology,grant number KS2222-10.
文摘Electrochemical water splitting represents one of the most promising technologies to produce green hydrogen,which can help to realize the goal of achieving carbon neutrality.While substantial efforts on a laboratory scale have been made for understanding fundamental catalysis and developing high-performance electrocatalysts for the two half-reactions involved in water electrocatalysis,much less attention has been paid to doing relevant research on a larger scale.For example,few such researches have been done on an industrial scale.Herein,we review the very recent endeavors to bridge the gaps between fundamental research and industrial applications for water electrolysis.We begin by introducing the fundamentals of electrochemical water splitting and then present comparisons of testing protocol,figure of merit,catalyst of interest,and manufacturing cost for laboratory and industry-based water-electrolysis research.Special attention is paid to tracking the surface reconstruction process and identifying real catalytic species under different testing conditions,which highlight the significant distinctions of corresponding electrochemical reconstruction mechanisms.Advances in catalyst designs for industry-relevant water electrolysis are also summarized,which reveal the progress of moving the practical applications forward and accelerating synergies between material science and engineering.Perspectives and challenges of electrocatalyst design strategies are proposed finally to further bridge the gaps between lab-scale research and large-scale electrocatalysis applications.
文摘Upon the view of this work, industrial floor is a vital structure due to its relation to quality of production, labor comfort, and human health. Flooring costs may reach 20% of single-story building construction expenditure, and the consumption of concrete for floors may come to 40% - 50% of the total size of concrete. Thereby, the efficient design of floor will reduce materials consumption and labor, and will increase the endurance of the floor. Fiber reinforcement reduces the thickness of the subfloor about 20% - 30%, hence enabling to reduce the consumption of cement and fillers. The use of fiber meshes will enable to save 30% - 40% of steel. Despite the flexible use of fiber in concrete reinforcement saves effort and money, still fiber reinforced concrete is lacking additional regulations in Jordan.
基金The authors extend their appreciation to the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the Project Number IFPHI-218-611-2020.”。
文摘The Industrial Internet of Things(IIoT)has been growing for presentations in industry in recent years.Security for the IIoT has unavoidably become a problem in terms of creating safe applications.Due to continual needs for new functionality,such as foresight,the number of linked devices in the industrial environment increases.Certification of fewer signatories gives strong authentication solutions and prevents trustworthy third parties from being publicly certified among available encryption instruments.Hence this blockchain-based endpoint protection platform(BCEPP)has been proposed to validate the network policies and reduce overall latency in isolation or hold endpoints.A resolver supports the encoded model as an input;network functions can be optimized as an output in an infrastructure network.The configuration of the virtual network functions(VNFs)involved fulfills network characteristics.The output ensures that the final service is supplied at the least cost,including processing time and network latency.According to the findings of this comparison,our design is better suited to simplified trust management in IIoT devices.Thus,the experimental results show the adaptability and resilience of our suggested confidence model against behavioral changes in hostile settings in IIoT networks.The experimental results show that our proposed method,BCEPP,has the following,when compared to other methods:high computational cost of 95.3%,low latency ratio of 28.5%,increased data transmitting rate up to 94.1%,enhanced security rate of 98.6%,packet reception ratio of 96.1%,user satisfaction index of 94.5%,and probability ratio of 33.8%.
文摘After a brief introduction regarding the different approaches to superhard coatings we shall concentrate on the problem of the reproducibility of the deposition of superhard and thermally very stable nanocomposites according to the design principle published by Veprek and Reiprich in 1995. It will be shown that either the choice of inappropriate deposition conditions, in contradiction to our design principle, or impurities in the coatings are the reason for the lack of reproducibility of our earlier results by many other workers. We shall also briefly summarize the recent industrial applications.
文摘The main aim of this work is to study the possibility of using different Emirati limestones for the production of quicklime. Representative limestone samples have been collected to represent the Triassic, Jurassic, Cretaceous, Eocene and Oligocene ages. The limestone samples have been characterized for their microstructure, mineral and chemical composition, physico-mechanical characteristics, thermal behavior using polarizing and scanning microscopes together with X-ray micro-tomography, XRD-IR, XRF, Archimedes and Mercury intrusion methods and DTA-TGA, respectively. Post characterization, the samples were fired in electrical muffle furnace for calcination under the firing conditions (800℃ to 1100℃) for (0.25 – 2 h). Then the lime grains have been characterized for their hydration rate, free lime content, pore-distribution and microfabric.
文摘This paper presents a general view on up to date and future industrial applications of Rare Earths in the Hi-Tech field in Japan , mainly concerning magnets and rechargeable batteries .
基金the High Technology Research and Development Programme of China
文摘Research on high temperature wear mechanism shows that the oxidation and corrosion resistance, high temperature hardness, thermal fatigue resistance and structure stability are main control factors for Ni_3Al based alloys. Some important workpieces have been produced in mass quantity such as the guide shoe used in wire hot rolling. Ni_3Al based alloys could be used as cavitation erosion resistant materials mainly because of their high temperature mechanical properties, high work hardening ability and fatigue resistance. The weld electrode of Ni_3Al based alloy has been fabricated and used in the protection against cavitation erosion of big blade of hydraulic turbine in Sanmenxia Hydropower Station. Ni_3Al based alloys exhibit superproperties in the situation of high temperature over 1200℃, for example, in the work condition of flame tube of jet. Some of rivets used in combustor of jet are fabricated and tested.
文摘Virtual Reality(VR)has been around for a long time but has come into the spotlight only recently.From an industrial perspective,this article serves as a proverbial scalpel to dissect the different use cases and commercial applications of VR in Singapore.Before researching the Singapore market,we examine how VR has evolved.At the moment,the global annual budget for VR(and augmented reality)is at an upward trend with a leading growth in market value for the training sector.VR in Singapore has also seen a rapid development in recent years.We discuss some of the Singapore government's initiatives to promote the commercial adoption of VR for the digital economy of the nation.To address the mass adoption of VR,we present VRcollab's business solutions for the construction and building industry.2020 is one of the most important years for VR in history.
基金The authors would like to acknowledge the support from the Natural Sciences and Engineering Research Council of Canada in the form of Discovery Grants to ARR and SS(RGPIN-2019-07246 and RGPIN-2022-04988).A.Rosenkranz greatly acknowledges the financial support given by ANID-Chile within the project Fondecyt Regular 1220331 and Fondequip EQM190057.B.Wang gratefully acknowledges the financial support given by the Alexander von Humboldt Foundation.
文摘Flexible sensors based on MXene-polymer composites are highly prospective for next-generation wearable electronics used in human-machine interfaces.One of the motivating factors behind the progress of flexible sensors is the steady arrival of new conductive materials.MXenes,a new family of 2D nanomaterials,have been draw-ing attention since the last decade due to their high electronic conduc-tivity,processability,mechanical robustness and chemical tunability.In this review,we encompass the fabrication of MXene-based polymeric nanocomposites,their structure-property relationship,and applications in the flexible sensor domain.Moreover,our discussion is not only lim-ited to sensor design,their mechanism,and various modes of sensing platform,but also their future perspective and market throughout the world.With our article,we intend to fortify the bond between flexible matrices and MXenes thus promoting the swift advancement of flexible MXene-sensors for wearable technologies.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (No.2021R1C1C1013133)supported by the Institute of Information and Communications Technology Planning and Evaluation (IITP)grant funded by the Korea Government (MSIT) (RS-2022-00167197,Development of Intelligent 5G/6G Infrastructure Technology for The Smart City)supported by the Soonchunhyang University Research Fund.
文摘In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to improve IIoT service efficiency.There are two types of costs for this kind of IoT network:a communication cost and a computing cost.For service efficiency,the communication cost of data transmission should be minimized,and the computing cost in the edge cloud should be also minimized.Therefore,in this paper,the communication cost for data transmission is defined as the delay factor,and the computing cost in the edge cloud is defined as the waiting time of the computing intensity.The proposed method selects an edge cloud that minimizes the total cost of the communication and computing costs.That is,a device chooses a routing path to the selected edge cloud based on the costs.The proposed method controls the data flows in a mesh-structured network and appropriately distributes the data processing load.The performance of the proposed method is validated through extensive computer simulation.When the transition probability from good to bad is 0.3 and the transition probability from bad to good is 0.7 in wireless and edge cloud states,the proposed method reduced both the average delay and the service pause counts to about 25%of the existing method.
基金the National Natural Science Foundation of China for Excellent Young Scholar(Grant No.52322313)National Key R&D Project from Minister of Science and Technology(2021YFA1201601)+6 种基金National Science Fund of China(62174014)Beijing Nova program(Z201100006820063)Youth Innovation Promotion Association CAS(2021165)Innovation Project of Ocean Science and Technology(22-3-3-hygg-18-hy)State Key Laboratory of New Ceramic and Fine Processing Tsinghua University(KFZD202202)Fundamental Research Funds for the Central Universities(292022000337)Young Top-Notch Talents Program of Beijing Excellent Talents Funding(2017000021223ZK03).
文摘The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables energy harvesting from sources such as water,wind,and sound.In this review,we provide an overview of the coexistence of electron and ion transfer in the CE process.We elucidate the diverse dominant mechanisms observed at different interfaces and emphasize the interconnectedness and complementary nature of interface studies.The review also offers a comprehensive summary of the factors influencing charge transfer and the advancements in interfacial modification techniques.Additionally,we highlight the wide range of applications stemming from the distinctive characteristics of charge transfer at various interfaces.Finally,this review elucidates the future opportunities and challenges that interface CE may encounter.We anticipate that this review can offer valuable insights for future research on interface CE and facilitate the continued development and industrialization of TENG.