Under the same aerodynamic load,the load transmitted by the kick-reaction link actuator to the aircraft structure is only 1/5 to 1/3 of that of the point-to-point actuator,which can significantly reduce the weight of ...Under the same aerodynamic load,the load transmitted by the kick-reaction link actuator to the aircraft structure is only 1/5 to 1/3 of that of the point-to-point actuator,which can significantly reduce the weight of the structure,and is widely used in the main flight control surface of large and medium-sized civil airliners.In order to restrain the flutter of aircraft rudder surface,it is necessary to design the servo stiffness of the kick-reaction link actuator in the development stage,so that it can meet the dynamic stiffness requirement within the frequency range.Taking the actuator of a civil airliner as the research object,the dynamic stiffness modeling of elevator actuator is carried out on MATLAB platform,and the dynamic stiffness test is carried out to verify the correctness of dynamic stiffness modeling.The simulation and test results show that the actuator can meet the dynamic stiffness design requirements.展开更多
Water vapor nucleation on particle's surface plays an important role in dust removal,cloud formation,and particle measurement.However,the selectivity of nucleation sites and the nucleation characteristic of water ...Water vapor nucleation on particle's surface plays an important role in dust removal,cloud formation,and particle measurement.However,the selectivity of nucleation sites and the nucleation characteristic of water molecule on the particle's surface are still unclear,especially for the aggregated particles.In this paper,the effects of particle wettability and aggregation modes on the selectivity of nucleation sites and the nucleation characteristics were investigated using molecular dynamics simulation.The results were compared with our earlier experimental findings.It illustrates how the contact angle of clusters,the growth velocity,and the growth duration are all influenced by the interaction coefficient between water and particles.Moreover,the nucleation sites of water molecules on the particle aggregation surface exhibit a definite selectivity.The primary indicator of this selectivity is the preferential nucleation of water molecules at the interfaces of linear chain aggregation particles,at the inner side of non-linear chain aggregation particles,and at the centers of ring aggregation.These results are in good agreement with our previous experimental findings.More significantly,additional research has revealed that subcritical-size clusters typically aggregate on two-particle surfaces spacing when the spacing smaller than the critical cluster size.展开更多
The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link ...The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link network(FLN) control method for an NHV with dynamical thrust and parameter uncertainties.The approach devises a new partially-feedback-functional-link-network(PFFLN) adaptive law and combines it with the nonlinear generalized predictive control(NGPC) algorithm.The PFFLN is employed for approximating uncertainties in flight.Its weights are online tuned based on Lyapunov stability theorem for the first time.The learning process does not need any offline training phase.Additionally,a robust controller with an adaptive gain is designed to offset the approximation error.Finally,simulation results show a satisfactory performance for the NHV attitude tracking,and also illustrate the controller's robustness.展开更多
In order to test the anti-interference ability of an Unmanned Aerial Vehicle(UAV) data link in a complex electromagnetic environment,a method for simulating the dynamic electromagnetic interference of an indoor wirele...In order to test the anti-interference ability of an Unmanned Aerial Vehicle(UAV) data link in a complex electromagnetic environment,a method for simulating the dynamic electromagnetic interference of an indoor wireless environment is proposed.This method can estimate the relational degree between the actual face of an UAV data link in an interface environment and the simulation scenarios in an anechoic chamber by using the Grey Relational Analysis(GRA) theory.The dynamic drive of the microwave instrument produces a real-time corresponding interference signal and realises scene mapping.The experimental results show that the maximal correlation between the interference signal in the real scene and the angular domain of the radiation antenna in the anechoic chamber is 0.959 3.Further,the relational degree of the Signal-toInterference Ratio(SIR) of the UAV at its reception terminal indoors and in the anechoic chamber is 0.996 8,and the time of instrument drive is only approximately 10 μs.All of the above illustrates that this method can achieve a simulation close to a real field dynamic electromagnetic interference signal of an indoor UAV data link.展开更多
The object of study is about dynamic modeling and control for a 2degree-of-freedom (DOF) planar parallel mechanism (PM) with flexible links. The kinematic anddynamic equations are established according to the characte...The object of study is about dynamic modeling and control for a 2degree-of-freedom (DOF) planar parallel mechanism (PM) with flexible links. The kinematic anddynamic equations are established according to the characteristics of mixed rigid and flexiblestructure. By using the singular perturbation approach (SPA), the model of the mechanism can beseparated into slow and fast subsystems. Based on the feedback linearization theory and inputshaping technique, the large scale rigid motion controller and the flexible link vibrationcontroller can be designed separately to achieve fast and accurate positioning of the PM.展开更多
Asphaltene aggregation is a subject under vivid discussion:There are several parameters one needs to determine before its behavior can be mastered and better target solutions can be tailored.The nature of asphaltene a...Asphaltene aggregation is a subject under vivid discussion:There are several parameters one needs to determine before its behavior can be mastered and better target solutions can be tailored.The nature of asphaltene aggregation(colloidal or supramolecular)and the role of solvents and their mixtures are among the least understood parameters in asphaltene science.This paper addresses molecular dynamic simulations to correlate the aggregation properties of asphaltenes,their molecular structure and the concentration of these solvents.We show that the formation of the nanoaggregate depends,primarily,on the size of the conjugated core and on the eventual presence of polar groups capable of forming H-bonds.Heteroatoms on the conjugated core do not change their shape or type of aggregation but may induce stronger π-π interactions.The macroaggregation formation depends upon the length of the lateral chains of asphaltenes and also on the presence of polar groups at its end.Moreover,n-heptane and water may interact selectively with asphaltenes in function of their molecular architecture.Given this fact and the aggregation behavior observed,we advocate toward the assumption that a colloidal behavior of asphaltenes might be a particular case of a more general model,based on a supramolecular description.展开更多
To establish an efficient inter-satellite link (ISL) in an LEO network, the effect of geometric characteristics of ISL on the ISLs and the devices on the LEO satellite should be examined. Because of the continuous mov...To establish an efficient inter-satellite link (ISL) in an LEO network, the effect of geometric characteristics of ISL on the ISLs and the devices on the LEO satellite should be examined. Because of the continuous movement of the LEO satellite, the time-varying behaviours of the ISL's geometric charactersistics continuously change with the changes of the satellite's position on the orbit. These dynamic geometric characteristics of the ISLs are important for ISL's performance analyzing and the design of the devices on the LEO satellite. This paper describes dynamic geometric characteristics of ISL, analyzes the impact of these regulations on the tracking system of the satellite's antenna and the power adjusting system of the satellite's transmitter, with the Iridium system as an example.展开更多
To tackle the problem of simultaneous localization and mapping(SLAM) in dynamic environments, a novel algorithm using landscape theory of aggregation is presented. By exploiting the coherent explanation how actors for...To tackle the problem of simultaneous localization and mapping(SLAM) in dynamic environments, a novel algorithm using landscape theory of aggregation is presented. By exploiting the coherent explanation how actors form alignments in a game provided by the landscape theory of aggregation, the algorithm is able to explicitly deal with the ever-changing relationship between the static objects and the moving objects without any prior models of the moving objects. The effectiveness of the method has been validated by experiments in two representative dynamic environments: the campus road and the urban road.展开更多
Breaking water-in-oil emulsions during the refining of crude oils is an important step before any upgrading process is started.Asphaltene molecules are incriminated as playing an important role in this phenomenon.Unra...Breaking water-in-oil emulsions during the refining of crude oils is an important step before any upgrading process is started.Asphaltene molecules are incriminated as playing an important role in this phenomenon.Unraveling the mechanisms behind the affinity between them and water is a key step to understand how to break these emulsions more easily and require lower amounts of demulsifiers.Choosing which demulsifier molecule(s)to use is also primordial,but to do so rationally,one needs to know which are the molecular interactions in place between asphaltenes,porphyrins and water so that demulsifiers are chosen to destabilize a specific physical–chemical interaction.In this paper,we study the interactions arising between asphaltenes and porphyrins and six different molecules potentially displaying a demulsification action in the presence of water/oil interfaces.We demonstrate that the ionic demulsifier molecules present an interesting potential to either interact strongly with water,replacing asphaltenes in this interaction,or to interact with the active sites of asphaltenes,deactivating them and avoiding any asphaltenic interfacial activity.Finally,we also found that although asphaltenes do not migrate spontaneously toward the water/oil interfaces,porphyrins do so rather easily.This indicates that porphyrins do have an important activity at the water/oil interface.展开更多
The paper deals with the dynamic response prediction of the composite structure,which consists of two linear components coupled by some nonlinear vibration isolators. Based on the measured impulse response functions o...The paper deals with the dynamic response prediction of the composite structure,which consists of two linear components coupled by some nonlinear vibration isolators. Based on the measured impulse response functions of the linear components, three kinds of dynamic equations of interfacial integration are proposed and a procedure to transform the dynamic equations of integral type into a set of ordinary differential equations is suggested. Computer simulations and a real test are given to verify the effectiveness of the theoretical results.展开更多
The mobility and aggregation behavior of macromolecular lubricant oxidation products and their influences on the performance of base stock were probed by molecular dynamics(MD)simulation.The mean square displacement(M...The mobility and aggregation behavior of macromolecular lubricant oxidation products and their influences on the performance of base stock were probed by molecular dynamics(MD)simulation.The mean square displacement(MSD)of molecules was calculated to explore the mobility of molecules.The distribution appearance of lubricant oxidation products in models was acquired to explore the aggregation of molecules.The results show that the mobility of macromolecular oxidation products is lower than that of base stock.The MSD of macromolecular oxidation products reduces with an increasing macromolecular weight.Macromolecular oxidation products can also decrease the mobility of base stock.The interaction energy between the macromolecules and the base stock soars with the increase of macromolecular weight.Macromolecules with a larger molecular weight can affect more base stock molecules with stronger restriction,which leads to lower mobility of base stock molecules.There are aggregates formed among macromolecular oxidation products,and the molecules in aggregates are connected by hydrogen bonds.The quantity of hydrogen bonds in aggregates is related to temperature.展开更多
The dynamics for multi-link spatial flexible manipulator arms is investigated. The system considered here is an N-flexible-link manipulator driven by N DC-motors through N revolute flexiblejoints. The flexibility of e...The dynamics for multi-link spatial flexible manipulator arms is investigated. The system considered here is an N-flexible-link manipulator driven by N DC-motors through N revolute flexiblejoints. The flexibility of each flexible joint is modeled as a linearly elastic torsional spring, and the mass of the joint is also considered. For the flexibility of the link, all of the stretching deformation, bending deformation and the torsional deformation are included. The complete governing equations of motion of the system are derived via the Lagrange equations. The nonlinear description of the deformation field of the flexible link is adopted in the dynamic modeling, and thus the dynamic stiffening effects are captured. Based on this model, a general-purpose software package for dynamic simulation of multi-link spatial flexible manipulator arms is developed. Several illustrative examples are given to validate the algorithm presented in this paper and to indicate that not only dynamic stiffening effects but also the flexibility of the structure has significant influence on the dynamic performance of the manipulator.展开更多
Surfactant molecules, when dispersed in solution, have been shown to spontaneously form aggregates. Our previous studies on molecular dynamics(MD) calculations have shown that ionic sodium dodecyl sulfate molecules qu...Surfactant molecules, when dispersed in solution, have been shown to spontaneously form aggregates. Our previous studies on molecular dynamics(MD) calculations have shown that ionic sodium dodecyl sulfate molecules quickly aggregated even when the aggregation number is small. The aggregation rate, however, decreased for larger aggregation numbers. In addition, studies have shown that micelle formation was not completed even after a 100 ns-long MD run(Chem. Phys. Lett. 2016, 646, 36). Herein, we analyze the free energy change of micelle formation based on chemical species model combined with molecular dynamics calculations. First, the free energy landscape of the aggregation, ?G_(i+j)^+, where two aggregates with sizes i and j associate to form the(i + j)-mer, was investigated using the free energy of micelle formation of the i-mer, G_i^+, which was obtained through MD calculations. The calculated ?G_(i+j)^+ was negative for all the aggregations where the sum of DS ions in the two aggregates was 60 or less. From the viewpoint of chemical equilibrium, aggregation to the stable micelle is desired. Further, the free energy profile along possible aggregation pathways was investigated, starting from small aggregates and ending with the complete thermodynamically stable micelles in solution. The free energy profiles, G(l, k), of the aggregates at l-th aggregation path and k-th state were evaluated by the formation free energy ∑_in_i( l,k)G_i^+ and the free energy of mixing ∑_in_i( l,k)k_BTln( n_i( l,k)/n( l,k)), where ni(l, k) is the number of i-mer in the system at the l-th i aggregation path and k-th state, with n(l,k)= ∑_n_i( l,k). All the aggregation pathways were obtained from the initial i state of 12 pentamers to the stable micelle with i = 60. All the calculated G(l, k) values monotonically decreased with increasing k. This indicates that there are no free energy barriers along the pathways. Hence, the slowdown is not due to the thermodynamic stability of the aggregates, but rather the kinetics that inhibit the association of the fragments. The time required for a collision between aggregates, one of the kinetic factors, was evaluated using the fast passage time, t_(FPT). The calculated t_(FPT) was about 20 ns for the aggregates with N = 31. Therefore, if aggregation is a diffusion-controlled process, it should be completed within the 100 ns-simulation. However, aggregation does not occur due to the free energy barrier between the aggregates, that is, the repulsive force acting on them. This may be caused by electrostatic repulsions produced by the overlap of the electric double layers, which are formed by the negative charge of the hydrophilic groups and counter sodium ions on the surface of the aggregates.展开更多
A comprehensive simulation model--deposition, diffusion, rotation and aggregation--is presented to demonstrate the post-deposition phenomena of multiple cluster growth on liquid surfaces, such as post-deposition nucle...A comprehensive simulation model--deposition, diffusion, rotation and aggregation--is presented to demonstrate the post-deposition phenomena of multiple cluster growth on liquid surfaces, such as post-deposition nucleation, post- deposition growth and post-deposition coalescence. Emphasis is placed on the relaxations of monomer density, dimer density and cluster density as well as combined cluster-plus-monomer density with time after deposition ending. It is shown that post-deposition coalescence largely takes place after deposition due to the large mobility of clusters on liquid surfaces, while the post-deposition nucleation is only possible before the saturation cluster density is reached at the end of the deposition. The deposition flux and the moment of deposition ending play important roles in the post-deposition dynamics.展开更多
We present the results of molecular dynamics simulations of net positively charged fullerene nanoparticles in salt- free and salt-added solution. The aggregation of fullerene (C60)-like nanoparticle and counterion a...We present the results of molecular dynamics simulations of net positively charged fullerene nanoparticles in salt- free and salt-added solution. The aggregation of fullerene (C60)-like nanoparticle and counterion are studied in detail as a function of temperatures and a finite salt concentration. Our simulations show that the strong conformation changes as temperature changes. The net positively-charged nanoparticles do not repel each other but are condensed under proper temperatures. If salts are added, the aggregated nanoparticles will be disaggregated due to the Debye screening effect.展开更多
IntelligentPad approach provides a standard for dynamically linkable components. Based on the standard, this paper introduces an approach of developing dynamically linkable components by using object oriented techniques.
Unmanned aerial vehicles(UAVs) enable flexible networking functions in emergency scenarios.However,due to the movement characteristic of ground users(GUs),it is challenging to capture the interactions among GUs.Thus,w...Unmanned aerial vehicles(UAVs) enable flexible networking functions in emergency scenarios.However,due to the movement characteristic of ground users(GUs),it is challenging to capture the interactions among GUs.Thus,we propose a learningbased dynamic connectivity maintenance architecture to reduce the delay for the UAV-assisted device-todevice(D2D) multicast communication.In this paper,each UAV transmits information to a selected GU,and then other GUs receive the information in a multi-hop manner.To minimize the total delay while ensuring that all GUs receive the information,we decouple it into three subproblems according to the time division on the topology:For the cluster-head selection,we adopt the Whale Optimization Algorithm(WOA) to imitate the hunting behavior of whales by abstracting the UAVs and cluster-heads into whales and preys,respectively;For the D2D multi-hop link establishment,we make the best of social relationships between GUs,and propose a node mapping algorithm based on the balanced spanning tree(BST) with reconfiguration to minimize the number of hops;For the dynamic connectivity maintenance,Restricted Q-learning(RQL) is utilized to learn the optimal multicast timeslot.Finally,the simulation results show that our proposed algorithms perfor better than other benchmark algorithms in the dynamic scenario.展开更多
Cross-linked polystyrene/glass fiber composites were fabricated using cross-linked polystyrene (CLPS) as matrix and E-glass fiber as the reinforcement. Surfaces of E-glass fibers were modified by vinyl triethoxysila...Cross-linked polystyrene/glass fiber composites were fabricated using cross-linked polystyrene (CLPS) as matrix and E-glass fiber as the reinforcement. Surfaces of E-glass fibers were modified by vinyl triethoxysilane (VTES), vinyl trimethoxysilane (VTMS) and γ-methacryloylpropyl trimethoxysilane (MPS). The treated glass fibers were analyzed by fourier transform infrared spectroscopy (FTIR). Dynamic mechanical thermal analysis (DMTA) and thermo-gravimetric analysis (TGA) were employed to investigate the effect of glass fibers surface modification on viscoelastic behavior and thermal properties. The morphology of fracture surfaces of various composites was observed by scanning electron microscopy (SEM). The results revealed that these coupling agents were connected to the surfaces of the fibers by chemical bonding. Dynamic mechanical properties as well as thermal stability of the composites were improved considerablely, but to varying degrees depending on the fiber modification. The diversities of improvement of properties were attributed to the different interfacial adhesion between CLPS matrix and the glass fibers.展开更多
Split Hopkinson pressure bar(SHPB)was used to investigate the dynamic compressive properties of sisal fiber reinforced coral aggregate concrete(SFCAC).The results showed that,with the increase of strain rate,the dynam...Split Hopkinson pressure bar(SHPB)was used to investigate the dynamic compressive properties of sisal fiber reinforced coral aggregate concrete(SFCAC).The results showed that,with the increase of strain rate,the dynamic compressive strength,peak strain and toughness index of SFCAC are all greater than its static properties,indicating that SFCAC is a kind of rate-sensitive material.When the sisal fiber was blended,the failure mode showed obvious ductility.At high strain rates,the SFCAC without sisal fiber specimen was comminuted,and the SFCAC showed a"cracked without breaking"state.The results indicated that the sisal fiber played a significant role in reinforcing and strengthening the properties of concrete.The finite element software LS-DYNA was used to simulate two working conditions with strain rates of 78 and 101 s-1.The stressstrain curves and failure patterns obtained were in good agreement with the experimental results.展开更多
文摘Under the same aerodynamic load,the load transmitted by the kick-reaction link actuator to the aircraft structure is only 1/5 to 1/3 of that of the point-to-point actuator,which can significantly reduce the weight of the structure,and is widely used in the main flight control surface of large and medium-sized civil airliners.In order to restrain the flutter of aircraft rudder surface,it is necessary to design the servo stiffness of the kick-reaction link actuator in the development stage,so that it can meet the dynamic stiffness requirement within the frequency range.Taking the actuator of a civil airliner as the research object,the dynamic stiffness modeling of elevator actuator is carried out on MATLAB platform,and the dynamic stiffness test is carried out to verify the correctness of dynamic stiffness modeling.The simulation and test results show that the actuator can meet the dynamic stiffness design requirements.
基金supported by National Natural Science Foundation of China(grant No.52176095)Anhui Provincial Natural Science Foundation(grant No.2308085ME189)China Postdoctoral Science Foundation(grant No.2019M661688).
文摘Water vapor nucleation on particle's surface plays an important role in dust removal,cloud formation,and particle measurement.However,the selectivity of nucleation sites and the nucleation characteristic of water molecule on the particle's surface are still unclear,especially for the aggregated particles.In this paper,the effects of particle wettability and aggregation modes on the selectivity of nucleation sites and the nucleation characteristics were investigated using molecular dynamics simulation.The results were compared with our earlier experimental findings.It illustrates how the contact angle of clusters,the growth velocity,and the growth duration are all influenced by the interaction coefficient between water and particles.Moreover,the nucleation sites of water molecules on the particle aggregation surface exhibit a definite selectivity.The primary indicator of this selectivity is the preferential nucleation of water molecules at the interfaces of linear chain aggregation particles,at the inner side of non-linear chain aggregation particles,and at the centers of ring aggregation.These results are in good agreement with our previous experimental findings.More significantly,additional research has revealed that subcritical-size clusters typically aggregate on two-particle surfaces spacing when the spacing smaller than the critical cluster size.
基金supported by the National Natural Science Foundation of China (9071602860974106)
文摘The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link network(FLN) control method for an NHV with dynamical thrust and parameter uncertainties.The approach devises a new partially-feedback-functional-link-network(PFFLN) adaptive law and combines it with the nonlinear generalized predictive control(NGPC) algorithm.The PFFLN is employed for approximating uncertainties in flight.Its weights are online tuned based on Lyapunov stability theorem for the first time.The learning process does not need any offline training phase.Additionally,a robust controller with an adaptive gain is designed to offset the approximation error.Finally,simulation results show a satisfactory performance for the NHV attitude tracking,and also illustrate the controller's robustness.
基金supported by a certain Ministry Foundation under Grant No.20212HK03010
文摘In order to test the anti-interference ability of an Unmanned Aerial Vehicle(UAV) data link in a complex electromagnetic environment,a method for simulating the dynamic electromagnetic interference of an indoor wireless environment is proposed.This method can estimate the relational degree between the actual face of an UAV data link in an interface environment and the simulation scenarios in an anechoic chamber by using the Grey Relational Analysis(GRA) theory.The dynamic drive of the microwave instrument produces a real-time corresponding interference signal and realises scene mapping.The experimental results show that the maximal correlation between the interference signal in the real scene and the angular domain of the radiation antenna in the anechoic chamber is 0.959 3.Further,the relational degree of the Signal-toInterference Ratio(SIR) of the UAV at its reception terminal indoors and in the anechoic chamber is 0.996 8,and the time of instrument drive is only approximately 10 μs.All of the above illustrates that this method can achieve a simulation close to a real field dynamic electromagnetic interference signal of an indoor UAV data link.
基金This project is supported by National Natural Science Foundation of China (No.50390064, No.50375099) Doctorate Foundation of Ministry of Education of China(No.20020248048).
文摘The object of study is about dynamic modeling and control for a 2degree-of-freedom (DOF) planar parallel mechanism (PM) with flexible links. The kinematic anddynamic equations are established according to the characteristics of mixed rigid and flexiblestructure. By using the singular perturbation approach (SPA), the model of the mechanism can beseparated into slow and fast subsystems. Based on the feedback linearization theory and inputshaping technique, the large scale rigid motion controller and the flexible link vibrationcontroller can be designed separately to achieve fast and accurate positioning of the PM.
基金Isifor-Carnot Institute and Total Refining & Chemicals are also acknowledged for their financial support to this research project
文摘Asphaltene aggregation is a subject under vivid discussion:There are several parameters one needs to determine before its behavior can be mastered and better target solutions can be tailored.The nature of asphaltene aggregation(colloidal or supramolecular)and the role of solvents and their mixtures are among the least understood parameters in asphaltene science.This paper addresses molecular dynamic simulations to correlate the aggregation properties of asphaltenes,their molecular structure and the concentration of these solvents.We show that the formation of the nanoaggregate depends,primarily,on the size of the conjugated core and on the eventual presence of polar groups capable of forming H-bonds.Heteroatoms on the conjugated core do not change their shape or type of aggregation but may induce stronger π-π interactions.The macroaggregation formation depends upon the length of the lateral chains of asphaltenes and also on the presence of polar groups at its end.Moreover,n-heptane and water may interact selectively with asphaltenes in function of their molecular architecture.Given this fact and the aggregation behavior observed,we advocate toward the assumption that a colloidal behavior of asphaltenes might be a particular case of a more general model,based on a supramolecular description.
文摘To establish an efficient inter-satellite link (ISL) in an LEO network, the effect of geometric characteristics of ISL on the ISLs and the devices on the LEO satellite should be examined. Because of the continuous movement of the LEO satellite, the time-varying behaviours of the ISL's geometric charactersistics continuously change with the changes of the satellite's position on the orbit. These dynamic geometric characteristics of the ISLs are important for ISL's performance analyzing and the design of the devices on the LEO satellite. This paper describes dynamic geometric characteristics of ISL, analyzes the impact of these regulations on the tracking system of the satellite's antenna and the power adjusting system of the satellite's transmitter, with the Iridium system as an example.
基金Project(XK100070532)supported by Beijing Education Committee Cooperation Building Foundation,China
文摘To tackle the problem of simultaneous localization and mapping(SLAM) in dynamic environments, a novel algorithm using landscape theory of aggregation is presented. By exploiting the coherent explanation how actors form alignments in a game provided by the landscape theory of aggregation, the algorithm is able to explicitly deal with the ever-changing relationship between the static objects and the moving objects without any prior models of the moving objects. The effectiveness of the method has been validated by experiments in two representative dynamic environments: the campus road and the urban road.
基金the DN (Direction du Numé-rique) from Universitéde Pau et des Pays de l’Adour,MCIA (Mésocentre de Calcul Intensif Aquitain),GENCI-CINES (Grant 2017-c2016087698) for providing the computation power needed for this projectIsifor-Carnot Institute and Total Refining&Chemicals are also acknowledged for their financial support to this research project
文摘Breaking water-in-oil emulsions during the refining of crude oils is an important step before any upgrading process is started.Asphaltene molecules are incriminated as playing an important role in this phenomenon.Unraveling the mechanisms behind the affinity between them and water is a key step to understand how to break these emulsions more easily and require lower amounts of demulsifiers.Choosing which demulsifier molecule(s)to use is also primordial,but to do so rationally,one needs to know which are the molecular interactions in place between asphaltenes,porphyrins and water so that demulsifiers are chosen to destabilize a specific physical–chemical interaction.In this paper,we study the interactions arising between asphaltenes and porphyrins and six different molecules potentially displaying a demulsification action in the presence of water/oil interfaces.We demonstrate that the ionic demulsifier molecules present an interesting potential to either interact strongly with water,replacing asphaltenes in this interaction,or to interact with the active sites of asphaltenes,deactivating them and avoiding any asphaltenic interfacial activity.Finally,we also found that although asphaltenes do not migrate spontaneously toward the water/oil interfaces,porphyrins do so rather easily.This indicates that porphyrins do have an important activity at the water/oil interface.
文摘The paper deals with the dynamic response prediction of the composite structure,which consists of two linear components coupled by some nonlinear vibration isolators. Based on the measured impulse response functions of the linear components, three kinds of dynamic equations of interfacial integration are proposed and a procedure to transform the dynamic equations of integral type into a set of ordinary differential equations is suggested. Computer simulations and a real test are given to verify the effectiveness of the theoretical results.
基金The authors are grateful for the calculation support of the Key Laboratory of Molecular Oil Refining of the Research Institute of Petroleum Processing in SINOPEC and the financial supports from the Natural Science Foundation of China(NSFCNo.51671100)+2 种基金the State Key Laboratory of Metal Material for Marine Equipment and Application-School of Material and Metallurgy,University of Science and Technology Liaoning Co-project(No.SKLMEA-USTLN 201905)the University of Science and Technology Liaoning Talent Project(No.601010314)the University of Science and Technology Liaoning Young Teachers Fund(No.2019QN08).
文摘The mobility and aggregation behavior of macromolecular lubricant oxidation products and their influences on the performance of base stock were probed by molecular dynamics(MD)simulation.The mean square displacement(MSD)of molecules was calculated to explore the mobility of molecules.The distribution appearance of lubricant oxidation products in models was acquired to explore the aggregation of molecules.The results show that the mobility of macromolecular oxidation products is lower than that of base stock.The MSD of macromolecular oxidation products reduces with an increasing macromolecular weight.Macromolecular oxidation products can also decrease the mobility of base stock.The interaction energy between the macromolecules and the base stock soars with the increase of macromolecular weight.Macromolecules with a larger molecular weight can affect more base stock molecules with stronger restriction,which leads to lower mobility of base stock molecules.There are aggregates formed among macromolecular oxidation products,and the molecules in aggregates are connected by hydrogen bonds.The quantity of hydrogen bonds in aggregates is related to temperature.
基金supported by the National Natural Science Foundations of China (10772085,11272155 and 11132007)333 Project of Jiangsu Province,China(BRA2011172)NUST Research Funding,China(2011YBXM32)
文摘The dynamics for multi-link spatial flexible manipulator arms is investigated. The system considered here is an N-flexible-link manipulator driven by N DC-motors through N revolute flexiblejoints. The flexibility of each flexible joint is modeled as a linearly elastic torsional spring, and the mass of the joint is also considered. For the flexibility of the link, all of the stretching deformation, bending deformation and the torsional deformation are included. The complete governing equations of motion of the system are derived via the Lagrange equations. The nonlinear description of the deformation field of the flexible link is adopted in the dynamic modeling, and thus the dynamic stiffening effects are captured. Based on this model, a general-purpose software package for dynamic simulation of multi-link spatial flexible manipulator arms is developed. Several illustrative examples are given to validate the algorithm presented in this paper and to indicate that not only dynamic stiffening effects but also the flexibility of the structure has significant influence on the dynamic performance of the manipulator.
基金This work was supported by FLAGSHIP2020,MEXT within Priority Study 5(Development of New Fundamental Technologies for High-Efficiency Energy Creation,Conversion/Storage and Use)Using Computational Resources of the K Computer Provided by the RIKEN Advanced
文摘Surfactant molecules, when dispersed in solution, have been shown to spontaneously form aggregates. Our previous studies on molecular dynamics(MD) calculations have shown that ionic sodium dodecyl sulfate molecules quickly aggregated even when the aggregation number is small. The aggregation rate, however, decreased for larger aggregation numbers. In addition, studies have shown that micelle formation was not completed even after a 100 ns-long MD run(Chem. Phys. Lett. 2016, 646, 36). Herein, we analyze the free energy change of micelle formation based on chemical species model combined with molecular dynamics calculations. First, the free energy landscape of the aggregation, ?G_(i+j)^+, where two aggregates with sizes i and j associate to form the(i + j)-mer, was investigated using the free energy of micelle formation of the i-mer, G_i^+, which was obtained through MD calculations. The calculated ?G_(i+j)^+ was negative for all the aggregations where the sum of DS ions in the two aggregates was 60 or less. From the viewpoint of chemical equilibrium, aggregation to the stable micelle is desired. Further, the free energy profile along possible aggregation pathways was investigated, starting from small aggregates and ending with the complete thermodynamically stable micelles in solution. The free energy profiles, G(l, k), of the aggregates at l-th aggregation path and k-th state were evaluated by the formation free energy ∑_in_i( l,k)G_i^+ and the free energy of mixing ∑_in_i( l,k)k_BTln( n_i( l,k)/n( l,k)), where ni(l, k) is the number of i-mer in the system at the l-th i aggregation path and k-th state, with n(l,k)= ∑_n_i( l,k). All the aggregation pathways were obtained from the initial i state of 12 pentamers to the stable micelle with i = 60. All the calculated G(l, k) values monotonically decreased with increasing k. This indicates that there are no free energy barriers along the pathways. Hence, the slowdown is not due to the thermodynamic stability of the aggregates, but rather the kinetics that inhibit the association of the fragments. The time required for a collision between aggregates, one of the kinetic factors, was evaluated using the fast passage time, t_(FPT). The calculated t_(FPT) was about 20 ns for the aggregates with N = 31. Therefore, if aggregation is a diffusion-controlled process, it should be completed within the 100 ns-simulation. However, aggregation does not occur due to the free energy barrier between the aggregates, that is, the repulsive force acting on them. This may be caused by electrostatic repulsions produced by the overlap of the electric double layers, which are formed by the negative charge of the hydrophilic groups and counter sodium ions on the surface of the aggregates.
基金Project supported by the Natural Science Foundation for Young Scientists of Zhejiang Province, China (Grant No RC02069) and Zhejiang Provincial Natural Science Foundation of China (Grant No 101032).
文摘A comprehensive simulation model--deposition, diffusion, rotation and aggregation--is presented to demonstrate the post-deposition phenomena of multiple cluster growth on liquid surfaces, such as post-deposition nucleation, post- deposition growth and post-deposition coalescence. Emphasis is placed on the relaxations of monomer density, dimer density and cluster density as well as combined cluster-plus-monomer density with time after deposition ending. It is shown that post-deposition coalescence largely takes place after deposition due to the large mobility of clusters on liquid surfaces, while the post-deposition nucleation is only possible before the saturation cluster density is reached at the end of the deposition. The deposition flux and the moment of deposition ending play important roles in the post-deposition dynamics.
基金Project supported by the Natural Science Foundation of Fujian Province of China(Grant No.2012J05008)
文摘We present the results of molecular dynamics simulations of net positively charged fullerene nanoparticles in salt- free and salt-added solution. The aggregation of fullerene (C60)-like nanoparticle and counterion are studied in detail as a function of temperatures and a finite salt concentration. Our simulations show that the strong conformation changes as temperature changes. The net positively-charged nanoparticles do not repel each other but are condensed under proper temperatures. If salts are added, the aggregated nanoparticles will be disaggregated due to the Debye screening effect.
文摘IntelligentPad approach provides a standard for dynamically linkable components. Based on the standard, this paper introduces an approach of developing dynamically linkable components by using object oriented techniques.
基金supported by the Future Scientists Program of China University of Mining and Technology(2020WLKXJ030)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX201993).
文摘Unmanned aerial vehicles(UAVs) enable flexible networking functions in emergency scenarios.However,due to the movement characteristic of ground users(GUs),it is challenging to capture the interactions among GUs.Thus,we propose a learningbased dynamic connectivity maintenance architecture to reduce the delay for the UAV-assisted device-todevice(D2D) multicast communication.In this paper,each UAV transmits information to a selected GU,and then other GUs receive the information in a multi-hop manner.To minimize the total delay while ensuring that all GUs receive the information,we decouple it into three subproblems according to the time division on the topology:For the cluster-head selection,we adopt the Whale Optimization Algorithm(WOA) to imitate the hunting behavior of whales by abstracting the UAVs and cluster-heads into whales and preys,respectively;For the D2D multi-hop link establishment,we make the best of social relationships between GUs,and propose a node mapping algorithm based on the balanced spanning tree(BST) with reconfiguration to minimize the number of hops;For the dynamic connectivity maintenance,Restricted Q-learning(RQL) is utilized to learn the optimal multicast timeslot.Finally,the simulation results show that our proposed algorithms perfor better than other benchmark algorithms in the dynamic scenario.
基金Supported by National Natural Science Foundation of China (No.50872101,A3 Foresight Program-50821140308)National Basic Research Program of China (No.2009CB939704)a joint project of National Nature Science Foundation of China and Russian Foundation for Basic Research(No.NSFC-RFBR 51011120252)
文摘Cross-linked polystyrene/glass fiber composites were fabricated using cross-linked polystyrene (CLPS) as matrix and E-glass fiber as the reinforcement. Surfaces of E-glass fibers were modified by vinyl triethoxysilane (VTES), vinyl trimethoxysilane (VTMS) and γ-methacryloylpropyl trimethoxysilane (MPS). The treated glass fibers were analyzed by fourier transform infrared spectroscopy (FTIR). Dynamic mechanical thermal analysis (DMTA) and thermo-gravimetric analysis (TGA) were employed to investigate the effect of glass fibers surface modification on viscoelastic behavior and thermal properties. The morphology of fracture surfaces of various composites was observed by scanning electron microscopy (SEM). The results revealed that these coupling agents were connected to the surfaces of the fibers by chemical bonding. Dynamic mechanical properties as well as thermal stability of the composites were improved considerablely, but to varying degrees depending on the fiber modification. The diversities of improvement of properties were attributed to the different interfacial adhesion between CLPS matrix and the glass fibers.
基金National Natural Science Foundation of China(Nos.51508272,11832013,51878350,52078250)。
文摘Split Hopkinson pressure bar(SHPB)was used to investigate the dynamic compressive properties of sisal fiber reinforced coral aggregate concrete(SFCAC).The results showed that,with the increase of strain rate,the dynamic compressive strength,peak strain and toughness index of SFCAC are all greater than its static properties,indicating that SFCAC is a kind of rate-sensitive material.When the sisal fiber was blended,the failure mode showed obvious ductility.At high strain rates,the SFCAC without sisal fiber specimen was comminuted,and the SFCAC showed a"cracked without breaking"state.The results indicated that the sisal fiber played a significant role in reinforcing and strengthening the properties of concrete.The finite element software LS-DYNA was used to simulate two working conditions with strain rates of 78 and 101 s-1.The stressstrain curves and failure patterns obtained were in good agreement with the experimental results.