Solar flares, sudden bursts of intense electromagnetic radiation from the Sun, can significantly disrupt technological infrastructure, including communication and navigation satellites. To mitigate these risks, accura...Solar flares, sudden bursts of intense electromagnetic radiation from the Sun, can significantly disrupt technological infrastructure, including communication and navigation satellites. To mitigate these risks, accurate forecasting of solar activity is crucial. This study investigates the potential of the Sun’s background X-ray flux as a tool for predicting solar flares. We analyzed data collected by solar telescopes and satellites between the years 2013 and 2023, focusing on the duration, frequency, and intensity of solar flares. We compared these characteristics with the background X-ray flux at the time of each flare event. Our analysis employed statistical methods to identify potential correlations between these solar phenomena. The key finding of this study reveals a significant positive correlation between solar flare activity and the Sun’s background X-ray flux. This suggests that these phenomena are interconnected within the framework of overall solar activity. We observed a clear trend: periods with increased occurrences of solar flares coincided with elevated background flux levels. This finding has the potential to improve solar activity forecasting. By monitoring background flux variations, we may be able to develop a more effective early warning system for potentially disruptive solar flares. This research contributes to a deeper understanding of the complex relationship between solar flares and the Sun’s overall radiative output. These findings indicate that lower-resolution X-ray sensors can be a valuable tool for identifying periods of increased solar activity by allowing us to monitor background flux variations. A more affordable approach to solar activity monitoring is advised.展开更多
By analysing a long series of data (1996-2019), we show that solar cycle 23 was more marked by violent solar flares and coronal mass ejections (CMEs) compared to solar cycle 24. In particular, the halo coronal mass ej...By analysing a long series of data (1996-2019), we show that solar cycle 23 was more marked by violent solar flares and coronal mass ejections (CMEs) compared to solar cycle 24. In particular, the halo coronal mass ejections associated with X-class flares appear to be among the most energetic events in solar activity given the size of the flares, the speed of the CMEs and the intense geomagnetic storms they produce. Out of eighty-six (86) X-class halo CMEs, thirty-seven (37) or 43% are highly geoeffective;twenty-four (24) or approximately 28% are moderately geoeffective and twenty-five (25) or 29% are not geoeffective. Over the two solar cycles (1996 to 2019), 71% of storms were geoeffective and 29% were not. For solar cycle 23, about 78% of storms were geoeffective, while for solar cycle 24, about 56% were geoeffective. For the statistical study based on speed, 85 halo CMEs associated with X-class flares were selected because the CME of 6 December 2006 has no recorded speed value. For both solar cycles, 75.29% of the halo CMEs associated with X-class flares have a speed greater than 1000 km/s. The study showed that 42.18% of halo (X) CMEs with speeds above 1000 km/s could cause intense geomagnetic disturbances. These results show the contribution (in terms of speed) of each class of halo (X) CMEs to the perturbation of the Earth’s magnetic field. Coronal mass ejections then become one of the key indicators of solar activity, especially as they affect the Earth.展开更多
Using the data on magnetic field maps and continuum intensity for Solar Cycles 23 and 24,we explored 100 active regions(ARs)that produced M5.0 or stronger flares.We focus on the presence/absence of the emergence of ma...Using the data on magnetic field maps and continuum intensity for Solar Cycles 23 and 24,we explored 100 active regions(ARs)that produced M5.0 or stronger flares.We focus on the presence/absence of the emergence of magnetic flux in these ARs 2-3 days before the strong flare onset.We found that 29 ARs in the sample emerged monotonically amidst quiet-Sun.A major emergence of a new magnetic flux within a pre-existing AR yielding the formation of a complex flare-productive configuration was observed in another 24 cases.For 30 ARs,an insignificant(in terms of the total magnetic flux of pre-existing AR)emergence of a new magnetic flux within the pre-existing magnetic configuration was observed;for some of them the emergence resulted in a formation of a configuration with a small δ-sunspot;11 out of 100 ARs exhibited no signatures of magnetic flux emergence during the entire interval of observation.In six cases the emergence was in progress when the AR appeared on the Eastern limb,so that the classification and timing of emergence were not possible.We conclude that the recent flux emergence is not a necessary and/or sufficient condition for strong flaring of an AR.The flux emergence rate of flare-productive ARs analyzed here was compared with that of flare-quiet ARs analyzed in our previous studies.We revealed that the flare-productive ARs tend to display faster emergence than the flare-quiet ones do.展开更多
This paper deduced the temporal evolution of the magnetic field through a series of high-resolution vector magnetograms and calculated the fine distribution map of current density during an X9.3-class flare eruptions ...This paper deduced the temporal evolution of the magnetic field through a series of high-resolution vector magnetograms and calculated the fine distribution map of current density during an X9.3-class flare eruptions using Ampère's law.The results show that a pair of conjugate current ribbons exist on both sides of the magnetic neutral line in this active region,and these conjugate current ribbons persist before,during,and after the flare.It was observed that the X9.3-class flare brightened in the form of a bright core and evolved into a double-ribbon flare over time.Importantly,the position of the double-ribbon flare matches the position of the current ribbons with high accuracy,and their morphologies are very similar.By investigating the complexity of current density and flare morphology,we discovered a potential connection between the eruption of major flares and the characteristics of current density.展开更多
The solar flare is one of the most violent explosions,and can disturb the near-Earth space weather.Except for commonly single-peaked solar flares in soft X-ray,some special flares show intriguing a two-peak feature th...The solar flare is one of the most violent explosions,and can disturb the near-Earth space weather.Except for commonly single-peaked solar flares in soft X-ray,some special flares show intriguing a two-peak feature that is deserved much more attentions.Here,we reported a confined two-peaked solar flare and analyzed the associated eruptions using high-quality observations from Educational Adaptive-optics Solar Telescope and Solar Dynamics Observatory.Before the flare,a magnetic flux rope(MFR)formed through partially tether-cutting reconnection between two sheared arches.The flare occurred after the MFR eruption that was confined by the overlying strong field.Interestingly,a small underlying filament immediately erupted,which was possibly destabilized by the flare ribbon.The successive eruptions were confirmed by the analysis of the emission measure and the reconnection fluxes.Therefore,we suggest that the two peaks of the confined solar flare are corresponding to two episodes of magnetic reconnection during the successive eruptions of the MFR and the underlying filament.展开更多
In our previous work,we searched for superflares on different types of stars while focusing on G-type dwarfs using entire Kepler data to study statistical properties of the occurrence rate of superflares.Using these n...In our previous work,we searched for superflares on different types of stars while focusing on G-type dwarfs using entire Kepler data to study statistical properties of the occurrence rate of superflares.Using these new data,as a byproduct,we found 14 cases of superflare detection on 13 slowly rotating Sun-like stars with rotation periods of24.5–44 days.This result supports the earlier conclusion by others that the Sun may possibly undergo a surprise superflare.Moreover,we found 12 and seven new cases of detection of exceptionally large amplitude superflares on six and four main sequence stars of G-and M-type,respectively.No large-amplitude flares were detected in A,F or K main sequence stars.Here we present preliminary analysis of these cases.The superflare detection,i.e.,an estimation of flare energy,is based on a more accurate method compared to previous studies.We fit an exponential decay function to flare light curves and study the relation between e-folding decay time,τ,versus flare amplitude and flare energy.We find that for slowly rotating Sun-like stars,large values ofτcorrespond to small flare energies and small values ofτcorrespond to high flare energies considered.Similarly,τis large for small flare amplitudes andτis small for large amplitudes considered.However,there is no clear relation between these parameters for large amplitude superflares in the main sequence G-and M-type stars,as we could not establish clear functional dependence between the parameters via standard fitting algorithms.展开更多
Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic ...Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic scale,have been considered the most promising candidate for solar evaporation.However,the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck,restricting the widespread application.Herein,we report ionization engineering,which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules,fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine.The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers.The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt%brine with 95.6%efficiency under one sun irradiation,surpassing most of the reported literature.More notably,such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation.Meantime,on the basis of the cation selectivity induced by the electronegativity,we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night,anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity.展开更多
Solar Wind Charge eXchange X-ray(SWCX) emission in the heliosphere and Ea rth’s exosphere is a hard to avoid signal in soft Xray obse rvations of astrophysical targets.On the other hand,the X-ray imaging possibilitie...Solar Wind Charge eXchange X-ray(SWCX) emission in the heliosphere and Ea rth’s exosphere is a hard to avoid signal in soft Xray obse rvations of astrophysical targets.On the other hand,the X-ray imaging possibilities offered by the SWCX process has led to an increasing number of future dedicated space missions for investigating the solar wind-terrestrial inte ractions and magnetospheric interfaces.In both cases,accurate modelling of the SWCX emission is key to correctly interpret its signal,and remove it from obse rvations,when needed.In this paper,we compile solar wind abundance measurements from ACE for different solar wind types,and atomic data from literature,including charge exchange cross-sections and emission probabilities,used fo r calculating the compound cross-section a for the SWCX X-ray emission.We calculate a values for charge-exchange with H and He,relevant to soft X-ray energy bands(0.1-2.0 keV)for various solar wind types and solar cycle conditions.展开更多
Wide bandgap perovskite solar cells(PSCs)have attracted significant attention because they can be applied to the top cells of tandem solar cells.However,high open-circuit voltage(V_(OC))deficit(>0.4 V)result from p...Wide bandgap perovskite solar cells(PSCs)have attracted significant attention because they can be applied to the top cells of tandem solar cells.However,high open-circuit voltage(V_(OC))deficit(>0.4 V)result from poor crystallization and high non-radiative recombination losses become a serious limitation in the pursuit of high performance.Here,the relevance between different Pbl_(2)proportions and performance parameters are revealed through analysis of surface morphology,residual stress,and photostability.The increase of Pbl_(2)proportion promotes crystal growth and reduces the work function of the perovskite film surface and promotes the energy level alignment with the carrier transport layer,which decreased the V_(OC)deficit.However,residual PbI_(2)exacerbated the stress level of perovskite film,and the resulting lattice disorder deteriorated the photostability of the device.Ultimately,after the synergistic passivation of residual PbI_(2)and PEAI,the V_(OC)achieves 1.266 V and V_(OC)deficit is less than 0.4 V,the record value in wide bandgap PSCs.展开更多
Eruption of solar flares is a complex nonlinear process,and the rays and high-energy particles generated by such an eruption are detrimental to the reliability of space-based or ground-based systems.So far,there are n...Eruption of solar flares is a complex nonlinear process,and the rays and high-energy particles generated by such an eruption are detrimental to the reliability of space-based or ground-based systems.So far,there are not reliable physical models to accurately account for the flare outburst mechanism,but a lot of data-driven models have been built to study a solar flare and forecast it.In the paper,the status of solar-flare forecasting is reviewed,with emphasis on the machine learning methods and data-processing techniques used in the models.At first,the essential forecast factors strongly relevant to solar flare outbursts,such as classification information of the sunspots and evolution pattern of the magnetic field,are reviewed and analyzed.Subsequently,methods of resampling for data preprocessing are introduced to solve the problems of class imbalance in the solar flare samples.Afterwards,typical model structures adopted for flare forecasting are reviewed from the aspects of the single and fusion models,and the forecast performances of the different models are analyzed.Finally,we herein summarize the current research on solar flare forecasting and outline its development trends.展开更多
With plenty of popular and effective ternary organic solar cells(OSCs)construction strategies proposed and applied,its power conversion efficiencies(PCEs)have come to a new level of over 19%in single-junction devices....With plenty of popular and effective ternary organic solar cells(OSCs)construction strategies proposed and applied,its power conversion efficiencies(PCEs)have come to a new level of over 19%in single-junction devices.However,previous studies are heavily based in chloroform(CF)leaving behind substantial knowledge deficiencies in understanding the influence of solvent choice when introducing a third component.Herein,we present a case where a newly designed asymmetric small molecular acceptor using fluoro-methoxylated end-group modification strategy,named BTP-BO-3FO with enlarged bandgap,brings different morphological evolution and performance improvement effect on host system PM6:BTP-eC9,processed by CF and ortho-xylene(o-XY).With detailed analyses supported by a series of experiments,the best PCE of 19.24%for green solvent-processed OSCs is found to be a fruit of finely tuned crystalline ordering and general aggregation motif,which furthermore nourishes a favorable charge generation and recombination behavior.Likewise,over 19%PCE can be achieved by replacing spin-coating with blade coating for active layer deposition.This work focuses on understanding the commonly met yet frequently ignored issues when building ternary blends to demonstrate cutting-edge device performance,hence,will be instructive to other ternary OSC works in the future.展开更多
Solar wind charge exchange(SWCX)is the process of solar wind high-valence ions exchanging charges with neutral components and generating soft X-rays.Recently,detecting the SWCX emission from the magnetosphere is propo...Solar wind charge exchange(SWCX)is the process of solar wind high-valence ions exchanging charges with neutral components and generating soft X-rays.Recently,detecting the SWCX emission from the magnetosphere is proposed as a new technique to study the magnetosphere using panoramic soft X-ray imaging.To better prepare for the data analysis of upcoming magnetospheric soft X-ray imaging missions,this paper compares the magnetospheric SWCX emission obtained by two methods in an XMM-Newton observation,during which the solar wind changed dramatically.The two methods differ in the data used to fit the diffuse X-ray background(DXB)parameters in spectral analysis.The method adding data from the ROSAT All-Sky Survey(RASS)is called the RASS method.The method using the quiet observation data is called the Quiet method,where quiet observations usually refer to observations made by the same satellite with the same target but under weaker solar wind conditions.Results show that the spectral compositions of magnetospheric SWCX emission obtained by the two methods are very similar,and the changes in intensity over time are highly consistent,although the intensity obtained by the RASS method is about 2.68±0.56 keV cm^(-2)s^(-1)sr^(-1)higher than that obtained by the Quiet method.Since the DXB intensity obtained by the RASS method is about 2.84±0.74 keV cm^(-2)s^(-1)sr^(-1)lower than that obtained by the Quiet method,and the linear correlation coefficient between the difference of SWCX and DXB obtained by the two methods in diffe rent energy band is close to-1,the diffe rences in magnetospheric SWCX can be fully attributed to the diffe rences in the fitted DXB.The difference between the two methods is most significant when the energy is less than 0.7 keV,which is also the main energy band of SWCX emission.In addition,the difference between the two methods is not related to the SWCX intensity and,to some extent,to solar wind conditions,because SWCX intensity typically va ries with the solar wind.In summary,both methods are robust and reliable,and should be considered based on the best available options.展开更多
Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative coo...Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption.展开更多
Gravure printing is a promising large-scale fabrication method for flexible organic solar cells(FOSCs)because it is compatible with two-dimension patternable roll-to-roll fabrication.However,the unsuitable rheological...Gravure printing is a promising large-scale fabrication method for flexible organic solar cells(FOSCs)because it is compatible with two-dimension patternable roll-to-roll fabrication.However,the unsuitable rheological property of ZnO nanoinks resulted in unevenness and looseness of the gravure-printed ZnO interfacial layer.Here we propose a strategy to manipulate the macroscopic and microscopic of the gravure-printed ZnO films through using mixed solvent and poly(vinylpyrrolidone)(PVP)additive.The regulation of drying speed effectively manipulates the droplets fusion and leveling process and eliminates the printing ribbing structure in the macroscopic morphology.The additive of PVP effectively regulates the rheological property and improves the microscopic compactness of the films.Following this method,large-area ZnO∶PVP films(28×9 cm^(2))with excellent uniformity,compactness,conductivity,and bending durability were fabricated.The power conversion efficiencies of FOSCs with gravure-printed AgNWs and ZnO∶PVP films reached 14.34%and 17.07%for the 1 cm^(2)PM6:Y6 and PM6∶L8-BO flexible devices.The efficiency of 17.07%is the highest value to date for the 1 cm^(2)FOSCs.The use of mixed solvent and PVP addition also significantly enlarged the printing window of ZnO ink,ensuring high-quality printed thin films with thicknesses varying from 30 to 100 nm.展开更多
Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation en...Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved.展开更多
Owing to the persisting hype in pushing toward global carbon neutrality,the study scope of atmospheric science is rapidly expanding.Among numerous trending topics,energy meteorology has been attracting the most attent...Owing to the persisting hype in pushing toward global carbon neutrality,the study scope of atmospheric science is rapidly expanding.Among numerous trending topics,energy meteorology has been attracting the most attention hitherto.One essential skill of solar energy meteorologists is solar power curve modeling,which seeks to map irradiance and auxiliary weather variables to solar power,by statistical and/or physical means.In this regard,this tutorial review aims to deliver a complete overview of those fundamental scientific and engineering principles pertaining to the solar power curve.Solar power curves can be modeled in two primary ways,one of regression and the other of model chain.Both classes of modeling approaches,alongside their hybridization and probabilistic extensions,which allow accuracy improvement and uncertainty quantification,are scrutinized and contrasted thoroughly in this review.展开更多
A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the mai...A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the main obstacle restricting the efficiency of PSMs.In this work,we adopted a solid-liquid two-step film formation technique,which involved the evaporation of a lead iodide film and blade coating of an organic ammonium halide solution to prepare perovskite films.This method possesses the advantages of integrating vapor deposition and solution methods,which could apply to substrates with different roughness and avoid using toxic solvents to achieve a more uniform,large-area perovskite film.Furthermore,modification of the NiO_(x)/perovskite buried interface and introduction of Urea additives were utilized to reduce interface recombination and regulate perovskite crystallization.As a result,a large-area perovskite film possessing larger grains,fewer pinholes,and reduced defects could be achieved.The inverted PSM with an active area of 61.56 cm^(2)(10×10 cm^(2)substrate)achieved a champion power conversion efficiency of 20.56%and significantly improved stability.This method suggests an innovative approach to resolving the uniformity issue associated with large-area film fabrication.展开更多
Tianxi Liu was missed to be denoted as a corresponding author in the article.Both Chao Zhang and Tianxi Liu are the corresponding authors of this article.The original article has been corrected.Open Access This articl...Tianxi Liu was missed to be denoted as a corresponding author in the article.Both Chao Zhang and Tianxi Liu are the corresponding authors of this article.The original article has been corrected.Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,which permits use,sharing,adaptation,distribution,and reproduction in any medium or format,as long as you give appropriate credit to the original author(s)and the source,provide a link to the Creative Commons licence,and indicate if changes were made.The images or other third-party material in this article are included in the article’s Creative Commons licence,unless indicated otherwise in a credit line to the material.If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use,you will need to obtain permission directly from the copyright holder.展开更多
Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovski...Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovskite solar cells(PSCs).Herein,we report a facile but powerful method to functionalize the surface of 2PACz-SAM,by which reproducible,highly stable,high-efficiency wide-bandgap PSCs can be obtained.The 2PACz surface treatment with various donor number solvents improves assembly of 2PACz-SAM and leave residual surface-bound solvent molecules on 2PACz-SAM,which increases perovskite grain size,retards halide segregation,and accelerates hole extraction.The surface functionalization achieves a high power conversion efficiency(PCE)of 17.62%for a single-junction wide-bandgap(~1.77 e V)PSC.We also demonstrate a monolithic all-perovskite tandem solar cell using surfaceengineered HSC,showing high PCE of 24.66%with large open-circuit voltage of 2.008 V and high fillfactor of 81.45%.Our results suggest this simple approach can further improve the tandem device,when coupled with a high-performance narrow-bandgap sub-cell.展开更多
Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent co...Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent conductive oxide(TCO)electrodes,which requires the introduction of a buffer layer to prevent sputtering damage.In this study,we show that the conventional buffers(i.e.,small organic molecules and atomic layer deposited metal oxides)used for organic-inorganic hybrid perovskites are not applicable to all-inorganic perovskites,due to non-uniform coverage of the vulnerable layers underneath,deterioration upon ion bombardment and moisture induced perovskite phase transition,A thin film of metal oxide nanoparticles by the spin-coating method serves as a non-destructive buffer layer for inorganic PSCs.All-inorganic inverted near-infrared-transparent PSCs deliver a PCE of 17.46%and an average transmittance of 73.7%between 780 and 1200 nm.In combination with an 18.56%Cu(In,Ga)Se_(2) bottom cell,we further demonstrate the first all-inorganic perovskite/CIGS 4-T tandem solar cell with a PCE of 24.75%,which exhibits excellent illumination stability by maintaining 86.7%of its initial efficiency after 1400 h.The non-destructive buffer lays the foundation for efficient and stable NIR-transparent inverted inorganic perovskite solar cells and perovskite-based tandems.展开更多
文摘Solar flares, sudden bursts of intense electromagnetic radiation from the Sun, can significantly disrupt technological infrastructure, including communication and navigation satellites. To mitigate these risks, accurate forecasting of solar activity is crucial. This study investigates the potential of the Sun’s background X-ray flux as a tool for predicting solar flares. We analyzed data collected by solar telescopes and satellites between the years 2013 and 2023, focusing on the duration, frequency, and intensity of solar flares. We compared these characteristics with the background X-ray flux at the time of each flare event. Our analysis employed statistical methods to identify potential correlations between these solar phenomena. The key finding of this study reveals a significant positive correlation between solar flare activity and the Sun’s background X-ray flux. This suggests that these phenomena are interconnected within the framework of overall solar activity. We observed a clear trend: periods with increased occurrences of solar flares coincided with elevated background flux levels. This finding has the potential to improve solar activity forecasting. By monitoring background flux variations, we may be able to develop a more effective early warning system for potentially disruptive solar flares. This research contributes to a deeper understanding of the complex relationship between solar flares and the Sun’s overall radiative output. These findings indicate that lower-resolution X-ray sensors can be a valuable tool for identifying periods of increased solar activity by allowing us to monitor background flux variations. A more affordable approach to solar activity monitoring is advised.
文摘By analysing a long series of data (1996-2019), we show that solar cycle 23 was more marked by violent solar flares and coronal mass ejections (CMEs) compared to solar cycle 24. In particular, the halo coronal mass ejections associated with X-class flares appear to be among the most energetic events in solar activity given the size of the flares, the speed of the CMEs and the intense geomagnetic storms they produce. Out of eighty-six (86) X-class halo CMEs, thirty-seven (37) or 43% are highly geoeffective;twenty-four (24) or approximately 28% are moderately geoeffective and twenty-five (25) or 29% are not geoeffective. Over the two solar cycles (1996 to 2019), 71% of storms were geoeffective and 29% were not. For solar cycle 23, about 78% of storms were geoeffective, while for solar cycle 24, about 56% were geoeffective. For the statistical study based on speed, 85 halo CMEs associated with X-class flares were selected because the CME of 6 December 2006 has no recorded speed value. For both solar cycles, 75.29% of the halo CMEs associated with X-class flares have a speed greater than 1000 km/s. The study showed that 42.18% of halo (X) CMEs with speeds above 1000 km/s could cause intense geomagnetic disturbances. These results show the contribution (in terms of speed) of each class of halo (X) CMEs to the perturbation of the Earth’s magnetic field. Coronal mass ejections then become one of the key indicators of solar activity, especially as they affect the Earth.
文摘Using the data on magnetic field maps and continuum intensity for Solar Cycles 23 and 24,we explored 100 active regions(ARs)that produced M5.0 or stronger flares.We focus on the presence/absence of the emergence of magnetic flux in these ARs 2-3 days before the strong flare onset.We found that 29 ARs in the sample emerged monotonically amidst quiet-Sun.A major emergence of a new magnetic flux within a pre-existing AR yielding the formation of a complex flare-productive configuration was observed in another 24 cases.For 30 ARs,an insignificant(in terms of the total magnetic flux of pre-existing AR)emergence of a new magnetic flux within the pre-existing magnetic configuration was observed;for some of them the emergence resulted in a formation of a configuration with a small δ-sunspot;11 out of 100 ARs exhibited no signatures of magnetic flux emergence during the entire interval of observation.In six cases the emergence was in progress when the AR appeared on the Eastern limb,so that the classification and timing of emergence were not possible.We conclude that the recent flux emergence is not a necessary and/or sufficient condition for strong flaring of an AR.The flux emergence rate of flare-productive ARs analyzed here was compared with that of flare-quiet ARs analyzed in our previous studies.We revealed that the flare-productive ARs tend to display faster emergence than the flare-quiet ones do.
基金supported by the Natural Natural Science Foundation of China(NSFC,grant No.12303062)Sichuan Science and Technology Program(2023NSFSC1351)+1 种基金Joint Funds of the National Natural Science Foundation of China(NSFC,grant No.U1931116)the Project Supported by the Specialized Research Fund for State Key Laboratories。
文摘This paper deduced the temporal evolution of the magnetic field through a series of high-resolution vector magnetograms and calculated the fine distribution map of current density during an X9.3-class flare eruptions using Ampère's law.The results show that a pair of conjugate current ribbons exist on both sides of the magnetic neutral line in this active region,and these conjugate current ribbons persist before,during,and after the flare.It was observed that the X9.3-class flare brightened in the form of a bright core and evolved into a double-ribbon flare over time.Importantly,the position of the double-ribbon flare matches the position of the current ribbons with high accuracy,and their morphologies are very similar.By investigating the complexity of current density and flare morphology,we discovered a potential connection between the eruption of major flares and the characteristics of current density.
基金supported by grants of the National Natural Foundation of China(NSFC12073016)the open topic of the Yunnan Key Laboratory of Solar Physics and Space Science(YNSPCC202217)。
文摘The solar flare is one of the most violent explosions,and can disturb the near-Earth space weather.Except for commonly single-peaked solar flares in soft X-ray,some special flares show intriguing a two-peak feature that is deserved much more attentions.Here,we reported a confined two-peaked solar flare and analyzed the associated eruptions using high-quality observations from Educational Adaptive-optics Solar Telescope and Solar Dynamics Observatory.Before the flare,a magnetic flux rope(MFR)formed through partially tether-cutting reconnection between two sheared arches.The flare occurred after the MFR eruption that was confined by the overlying strong field.Interestingly,a small underlying filament immediately erupted,which was possibly destabilized by the flare ribbon.The successive eruptions were confirmed by the analysis of the emission measure and the reconnection fluxes.Therefore,we suggest that the two peaks of the confined solar flare are corresponding to two episodes of magnetic reconnection during the successive eruptions of the MFR and the underlying filament.
基金Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX13AC07G and by other grants and contractsRiyadh,Saudi Arabia and the Royal Embassy of Saudi Arabia Cultural Bureau in London,UK for the financial support of her PhD scholarship,held at Queen Mary University of London。
文摘In our previous work,we searched for superflares on different types of stars while focusing on G-type dwarfs using entire Kepler data to study statistical properties of the occurrence rate of superflares.Using these new data,as a byproduct,we found 14 cases of superflare detection on 13 slowly rotating Sun-like stars with rotation periods of24.5–44 days.This result supports the earlier conclusion by others that the Sun may possibly undergo a surprise superflare.Moreover,we found 12 and seven new cases of detection of exceptionally large amplitude superflares on six and four main sequence stars of G-and M-type,respectively.No large-amplitude flares were detected in A,F or K main sequence stars.Here we present preliminary analysis of these cases.The superflare detection,i.e.,an estimation of flare energy,is based on a more accurate method compared to previous studies.We fit an exponential decay function to flare light curves and study the relation between e-folding decay time,τ,versus flare amplitude and flare energy.We find that for slowly rotating Sun-like stars,large values ofτcorrespond to small flare energies and small values ofτcorrespond to high flare energies considered.Similarly,τis large for small flare amplitudes andτis small for large amplitudes considered.However,there is no clear relation between these parameters for large amplitude superflares in the main sequence G-and M-type stars,as we could not establish clear functional dependence between the parameters via standard fitting algorithms.
基金the National Natural Science Foundation of China(Grant No.52076028).
文摘Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic scale,have been considered the most promising candidate for solar evaporation.However,the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck,restricting the widespread application.Herein,we report ionization engineering,which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules,fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine.The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers.The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt%brine with 95.6%efficiency under one sun irradiation,surpassing most of the reported literature.More notably,such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation.Meantime,on the basis of the cation selectivity induced by the electronegativity,we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night,anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity.
文摘Solar Wind Charge eXchange X-ray(SWCX) emission in the heliosphere and Ea rth’s exosphere is a hard to avoid signal in soft Xray obse rvations of astrophysical targets.On the other hand,the X-ray imaging possibilities offered by the SWCX process has led to an increasing number of future dedicated space missions for investigating the solar wind-terrestrial inte ractions and magnetospheric interfaces.In both cases,accurate modelling of the SWCX emission is key to correctly interpret its signal,and remove it from obse rvations,when needed.In this paper,we compile solar wind abundance measurements from ACE for different solar wind types,and atomic data from literature,including charge exchange cross-sections and emission probabilities,used fo r calculating the compound cross-section a for the SWCX X-ray emission.We calculate a values for charge-exchange with H and He,relevant to soft X-ray energy bands(0.1-2.0 keV)for various solar wind types and solar cycle conditions.
基金the supports from the National Natural Science Foundation of China(Nos.62264012,62164009)Inner Mongolia Higher Education Research Project(No.NJZZ22343)+1 种基金Inner Mongolia University Research Foundation for Advanced Talents in 2021(No.10000-21311201/005)the Inner Mongolia Autonomous Region for Advanced Talents in 2020(No.12000-12102628)。
文摘Wide bandgap perovskite solar cells(PSCs)have attracted significant attention because they can be applied to the top cells of tandem solar cells.However,high open-circuit voltage(V_(OC))deficit(>0.4 V)result from poor crystallization and high non-radiative recombination losses become a serious limitation in the pursuit of high performance.Here,the relevance between different Pbl_(2)proportions and performance parameters are revealed through analysis of surface morphology,residual stress,and photostability.The increase of Pbl_(2)proportion promotes crystal growth and reduces the work function of the perovskite film surface and promotes the energy level alignment with the carrier transport layer,which decreased the V_(OC)deficit.However,residual PbI_(2)exacerbated the stress level of perovskite film,and the resulting lattice disorder deteriorated the photostability of the device.Ultimately,after the synergistic passivation of residual PbI_(2)and PEAI,the V_(OC)achieves 1.266 V and V_(OC)deficit is less than 0.4 V,the record value in wide bandgap PSCs.
基金the support of the National Key Research and Development Program of China(No.2022YFA1604600)the National Natural Science Foundation of China(NSFC,Grant No.11975086)。
文摘Eruption of solar flares is a complex nonlinear process,and the rays and high-energy particles generated by such an eruption are detrimental to the reliability of space-based or ground-based systems.So far,there are not reliable physical models to accurately account for the flare outburst mechanism,but a lot of data-driven models have been built to study a solar flare and forecast it.In the paper,the status of solar-flare forecasting is reviewed,with emphasis on the machine learning methods and data-processing techniques used in the models.At first,the essential forecast factors strongly relevant to solar flare outbursts,such as classification information of the sunspots and evolution pattern of the magnetic field,are reviewed and analyzed.Subsequently,methods of resampling for data preprocessing are introduced to solve the problems of class imbalance in the solar flare samples.Afterwards,typical model structures adopted for flare forecasting are reviewed from the aspects of the single and fusion models,and the forecast performances of the different models are analyzed.Finally,we herein summarize the current research on solar flare forecasting and outline its development trends.
基金R.Ma thanks the support from PolyU Distinguished Postdoc Fellowship(1-YW4C)Z.Luo thanks the National Natural Science Foundation of China(NSFC,No.22309119)+7 种基金J.Wu thanks the Guangdong government and the Guangzhou government for funding(2021QN02C110)the Guangzhou Municipal Science and Technology Project(No.2023A03J0097 and 2023A03J0003)H.Yan appreciates the support from the National Key Research and Development Program of China(No.2019YFA0705900)funded by MOST,the Basic and Applied Research Major Program of Guangdong Province(No.2019B030302007)the Shen Zhen Technology and Innovation Commission through(Shenzhen Fundamental Research Program,JCYJ20200109140801751)the Hong Kong Research Grants Council(research fellow scheme RFS2021-6S05,RIF project R6021-18,CRF project C6023‐19G,GRF project 16310019,16310020,16309221,and 16309822)Hong Kong Innovation and Technology Commission(ITC‐CNERC14SC01)Foshan‐HKUST(Project NO.FSUST19‐CAT0202)Zhongshan Municipal Bureau of Science and Technology(NO.ZSST20SC02)and Tencent Xplorer Prize。
文摘With plenty of popular and effective ternary organic solar cells(OSCs)construction strategies proposed and applied,its power conversion efficiencies(PCEs)have come to a new level of over 19%in single-junction devices.However,previous studies are heavily based in chloroform(CF)leaving behind substantial knowledge deficiencies in understanding the influence of solvent choice when introducing a third component.Herein,we present a case where a newly designed asymmetric small molecular acceptor using fluoro-methoxylated end-group modification strategy,named BTP-BO-3FO with enlarged bandgap,brings different morphological evolution and performance improvement effect on host system PM6:BTP-eC9,processed by CF and ortho-xylene(o-XY).With detailed analyses supported by a series of experiments,the best PCE of 19.24%for green solvent-processed OSCs is found to be a fruit of finely tuned crystalline ordering and general aggregation motif,which furthermore nourishes a favorable charge generation and recombination behavior.Likewise,over 19%PCE can be achieved by replacing spin-coating with blade coating for active layer deposition.This work focuses on understanding the commonly met yet frequently ignored issues when building ternary blends to demonstrate cutting-edge device performance,hence,will be instructive to other ternary OSC works in the future.
基金supported by NNSFC grants 42322408,42188101 and 42074202the Strategic Pioneer Program on Space Science,CAS Grant nos.XDA15350201+3 种基金in part by the Research Fund from the Chinese Academy of Sciencesthe Specialized Research Fund for State Key Laboratories of China.supported by the Young Elite Scientists Sponsorship Program(CAST-Y202045)supported by Royal Society grant DHFR1211068。
文摘Solar wind charge exchange(SWCX)is the process of solar wind high-valence ions exchanging charges with neutral components and generating soft X-rays.Recently,detecting the SWCX emission from the magnetosphere is proposed as a new technique to study the magnetosphere using panoramic soft X-ray imaging.To better prepare for the data analysis of upcoming magnetospheric soft X-ray imaging missions,this paper compares the magnetospheric SWCX emission obtained by two methods in an XMM-Newton observation,during which the solar wind changed dramatically.The two methods differ in the data used to fit the diffuse X-ray background(DXB)parameters in spectral analysis.The method adding data from the ROSAT All-Sky Survey(RASS)is called the RASS method.The method using the quiet observation data is called the Quiet method,where quiet observations usually refer to observations made by the same satellite with the same target but under weaker solar wind conditions.Results show that the spectral compositions of magnetospheric SWCX emission obtained by the two methods are very similar,and the changes in intensity over time are highly consistent,although the intensity obtained by the RASS method is about 2.68±0.56 keV cm^(-2)s^(-1)sr^(-1)higher than that obtained by the Quiet method.Since the DXB intensity obtained by the RASS method is about 2.84±0.74 keV cm^(-2)s^(-1)sr^(-1)lower than that obtained by the Quiet method,and the linear correlation coefficient between the difference of SWCX and DXB obtained by the two methods in diffe rent energy band is close to-1,the diffe rences in magnetospheric SWCX can be fully attributed to the diffe rences in the fitted DXB.The difference between the two methods is most significant when the energy is less than 0.7 keV,which is also the main energy band of SWCX emission.In addition,the difference between the two methods is not related to the SWCX intensity and,to some extent,to solar wind conditions,because SWCX intensity typically va ries with the solar wind.In summary,both methods are robust and reliable,and should be considered based on the best available options.
基金supported by the National Science Fund for Distinguished Young Scholars(22125804)the National Natural Science Foundation of China(21808110,22078155,and 21878149).
文摘Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption.
基金supported by the National Natural Science Foundation of China(22135001)Youth Innovation Promotion Association(2019317)+2 种基金the Young Cross Team Project of CAS(JCTD-2021-14)CAS-CSIRO joint project of Chinese Academy of Sciences(121E32KYSB20190021)Vacuum Interconnected Nanotech Workstation,Suzhou Institute of Nano-Tech and Nano-Bionics of Chinese Academy of Sciences(CAS)
文摘Gravure printing is a promising large-scale fabrication method for flexible organic solar cells(FOSCs)because it is compatible with two-dimension patternable roll-to-roll fabrication.However,the unsuitable rheological property of ZnO nanoinks resulted in unevenness and looseness of the gravure-printed ZnO interfacial layer.Here we propose a strategy to manipulate the macroscopic and microscopic of the gravure-printed ZnO films through using mixed solvent and poly(vinylpyrrolidone)(PVP)additive.The regulation of drying speed effectively manipulates the droplets fusion and leveling process and eliminates the printing ribbing structure in the macroscopic morphology.The additive of PVP effectively regulates the rheological property and improves the microscopic compactness of the films.Following this method,large-area ZnO∶PVP films(28×9 cm^(2))with excellent uniformity,compactness,conductivity,and bending durability were fabricated.The power conversion efficiencies of FOSCs with gravure-printed AgNWs and ZnO∶PVP films reached 14.34%and 17.07%for the 1 cm^(2)PM6:Y6 and PM6∶L8-BO flexible devices.The efficiency of 17.07%is the highest value to date for the 1 cm^(2)FOSCs.The use of mixed solvent and PVP addition also significantly enlarged the printing window of ZnO ink,ensuring high-quality printed thin films with thicknesses varying from 30 to 100 nm.
基金the financial support from the National Key R&D program of China(2021YFF0500501 and 2021YFF0500504)the Fundamental Research Funds for the Central Universities(YJS2213 and JB211408)+1 种基金the National Natural Science Foundation of China(61874083)the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(No.2020GXLH-Z-014)
文摘Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved.
基金supported by the National Natural Science Foundation of China(project no.42375192),and the China Meteorological Administration Climate Change Special Program(CMA-CCSPproject no.QBZ202315)+2 种基金supported by the National Natural Science Foundation of China(project no.42030608)supported by the National Research,Development and Innovation Fund,project no.OTKA-FK 142702by the Hungarian Academy of Sciences through the Sustainable Development and Technologies National Programme(FFT NP FTA)and the János Bolyai Research Scholarship.
文摘Owing to the persisting hype in pushing toward global carbon neutrality,the study scope of atmospheric science is rapidly expanding.Among numerous trending topics,energy meteorology has been attracting the most attention hitherto.One essential skill of solar energy meteorologists is solar power curve modeling,which seeks to map irradiance and auxiliary weather variables to solar power,by statistical and/or physical means.In this regard,this tutorial review aims to deliver a complete overview of those fundamental scientific and engineering principles pertaining to the solar power curve.Solar power curves can be modeled in two primary ways,one of regression and the other of model chain.Both classes of modeling approaches,alongside their hybridization and probabilistic extensions,which allow accuracy improvement and uncertainty quantification,are scrutinized and contrasted thoroughly in this review.
基金the financial support from Shanxi Province Science and Technology Department(20201101012,202101060301016)the support from the APRC Grant of the City University of Hong Kong(9380086)+5 种基金the TCFS Grant(GHP/018/20SZ)MRP Grant(MRP/040/21X)from the Innovation and Technology Commission of Hong Kongthe Green Tech Fund(202020164)from the Environment and Ecology Bureau of Hong Kongthe GRF grants(11307621,11316422)from the Research Grants Council of Hong KongGuangdong Major Project of Basic and Applied Basic Research(2019B030302007)Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials(2019B121205002).
文摘A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the main obstacle restricting the efficiency of PSMs.In this work,we adopted a solid-liquid two-step film formation technique,which involved the evaporation of a lead iodide film and blade coating of an organic ammonium halide solution to prepare perovskite films.This method possesses the advantages of integrating vapor deposition and solution methods,which could apply to substrates with different roughness and avoid using toxic solvents to achieve a more uniform,large-area perovskite film.Furthermore,modification of the NiO_(x)/perovskite buried interface and introduction of Urea additives were utilized to reduce interface recombination and regulate perovskite crystallization.As a result,a large-area perovskite film possessing larger grains,fewer pinholes,and reduced defects could be achieved.The inverted PSM with an active area of 61.56 cm^(2)(10×10 cm^(2)substrate)achieved a champion power conversion efficiency of 20.56%and significantly improved stability.This method suggests an innovative approach to resolving the uniformity issue associated with large-area film fabrication.
文摘Tianxi Liu was missed to be denoted as a corresponding author in the article.Both Chao Zhang and Tianxi Liu are the corresponding authors of this article.The original article has been corrected.Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,which permits use,sharing,adaptation,distribution,and reproduction in any medium or format,as long as you give appropriate credit to the original author(s)and the source,provide a link to the Creative Commons licence,and indicate if changes were made.The images or other third-party material in this article are included in the article’s Creative Commons licence,unless indicated otherwise in a credit line to the material.If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use,you will need to obtain permission directly from the copyright holder.
基金supported by the National Research Foundation of Korea (NRF)the Ministry of Science,ICT (2022M3J1A1085285,2019R1A2C1084010,and 2022R1A2C2006532)the Korea Electric Power Corporation (R20XO02-1)。
文摘Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovskite solar cells(PSCs).Herein,we report a facile but powerful method to functionalize the surface of 2PACz-SAM,by which reproducible,highly stable,high-efficiency wide-bandgap PSCs can be obtained.The 2PACz surface treatment with various donor number solvents improves assembly of 2PACz-SAM and leave residual surface-bound solvent molecules on 2PACz-SAM,which increases perovskite grain size,retards halide segregation,and accelerates hole extraction.The surface functionalization achieves a high power conversion efficiency(PCE)of 17.62%for a single-junction wide-bandgap(~1.77 e V)PSC.We also demonstrate a monolithic all-perovskite tandem solar cell using surfaceengineered HSC,showing high PCE of 24.66%with large open-circuit voltage of 2.008 V and high fillfactor of 81.45%.Our results suggest this simple approach can further improve the tandem device,when coupled with a high-performance narrow-bandgap sub-cell.
基金financially supported by the National Natural Science Foundation of China (22279083,22109166,52202183)Guangdong Basic and Applied Basic Research Foundation (Grant No.2019A1515011136,2022B1515120006,2023B1515120041,2414050001473)+3 种基金Guangdong Province Higher Vocational Colleges and Schools Pearl River Scholar Funded SchemeGuangdong Provincial Key Laboratory Program (2021B1212040001)from the Department of Science and Technology of Guangdong ProvinceBeijing Institute of TechnologySongshan Lake Materials Laboratory。
文摘Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent conductive oxide(TCO)electrodes,which requires the introduction of a buffer layer to prevent sputtering damage.In this study,we show that the conventional buffers(i.e.,small organic molecules and atomic layer deposited metal oxides)used for organic-inorganic hybrid perovskites are not applicable to all-inorganic perovskites,due to non-uniform coverage of the vulnerable layers underneath,deterioration upon ion bombardment and moisture induced perovskite phase transition,A thin film of metal oxide nanoparticles by the spin-coating method serves as a non-destructive buffer layer for inorganic PSCs.All-inorganic inverted near-infrared-transparent PSCs deliver a PCE of 17.46%and an average transmittance of 73.7%between 780 and 1200 nm.In combination with an 18.56%Cu(In,Ga)Se_(2) bottom cell,we further demonstrate the first all-inorganic perovskite/CIGS 4-T tandem solar cell with a PCE of 24.75%,which exhibits excellent illumination stability by maintaining 86.7%of its initial efficiency after 1400 h.The non-destructive buffer lays the foundation for efficient and stable NIR-transparent inverted inorganic perovskite solar cells and perovskite-based tandems.