期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
A branch-and-bound algorithm for multi-dimensional quadratic 0-1 knapsack problems 被引量:2
1
作者 孙娟 盛红波 孙小玲 《Journal of Shanghai University(English Edition)》 CAS 2007年第3期233-236,共4页
In this paper, a branch-and-bound method for solving multi-dimensional quadratic 0-1 knapsack problems was studied. The method was based on the Lagrangian relaxation and the surrogate constraint technique for finding ... In this paper, a branch-and-bound method for solving multi-dimensional quadratic 0-1 knapsack problems was studied. The method was based on the Lagrangian relaxation and the surrogate constraint technique for finding feasible solutions. The Lagrangian relaxations were solved with the maximum-flow algorithm and the Lagrangian bounds was determined with the outer approximation method. Computational results show the efficiency of the proposed method for multi-dimensional quadratic 0-1 knapsack problems. 展开更多
关键词 multi-dimensional quadratic 0-1 knapsack problem branch-and-bound method Lagrangian relaxation outer approximation surrogate constraint.
下载PDF
An Improved Binary Wolf Pack Algorithm Based on Adaptive Step Length and Improved Update Strategy for 0-1 Knapsack Problems
2
作者 Liting Guo Sanyang Liu 《国际计算机前沿大会会议论文集》 2017年第2期105-106,共2页
Binary wolf pack algorithm (BWPA) is a kind of intelligence algorithm which can solve combination optimization problems in discrete spaces.Based on BWPA, an improved binary wolf pack algorithm (AIBWPA) can be proposed... Binary wolf pack algorithm (BWPA) is a kind of intelligence algorithm which can solve combination optimization problems in discrete spaces.Based on BWPA, an improved binary wolf pack algorithm (AIBWPA) can be proposed by adopting adaptive step length and improved update strategy of wolf pack. AIBWPA is applied to 10 classic 0-1 knapsack problems and compared with BWPA, DPSO, which proves that AIBWPA has higher optimization accuracy and better computational robustness. AIBWPA makes the parameters simple, protects the population diversity and enhances the global convergence. 展开更多
关键词 BINARY WOLF PACK ALGORITHM 0-1 knapsack problem ADAPTIVE step length Update strategy
下载PDF
改进贪心算法求解扩展简化折扣{0-1}背包问题 被引量:2
3
作者 林洪 邓艳 《西南师范大学学报(自然科学版)》 CAS 2022年第11期63-71,共9页
扩展简化折扣{0-1}背包问题(ESD{0-1}KP)是折扣{0-1}背包问题(D{0-1}KP)的拓展.ESD{0-1}KP增加了D{0-1}KP中单个项集中的物品数量,导致其求解难度增加,并且现有贪心策略算子(GSOR)算法效果不理想.基于ESD{0-1}KP模型,在每个项集中增加... 扩展简化折扣{0-1}背包问题(ESD{0-1}KP)是折扣{0-1}背包问题(D{0-1}KP)的拓展.ESD{0-1}KP增加了D{0-1}KP中单个项集中的物品数量,导致其求解难度增加,并且现有贪心策略算子(GSOR)算法效果不理想.基于ESD{0-1}KP模型,在每个项集中增加一个价值为0,质量为0的虚拟物品,同时对ESD{0-1}KP模型中的约束进行松弛,从理论上证明了ESD{0-1}KP与多选择背包问题(MCKP)等价.结合改进帕累托算法(IPA),提出新的贪心策略算子(NGSOR).NGSOR首先将同一项集多个物品的选择情况通过在项集内增加物品来表示,按从价值密度从高到低顺序选择物品,若被选择物品的价值比物品所在项集已选择物品的价值更大,则对该项集进行迭代.仿真实验结果表明:NGSOR相比于GSOR,求解精度平均提升24.56%,求解速度平均提升44.95%. 展开更多
关键词 贪心算法 扩展折扣{0-1}背包问题(ESD{0-1}KP) 改进帕累托算法(IPA) 价值密度 多选择背包问题(MCKP)
下载PDF
求解多维0/1背包问题的二元粒子群算法 被引量:12
4
作者 程美英 熊伟清 +1 位作者 严彬 叶青 《系统仿真学报》 CAS CSCD 北大核心 2009年第18期5735-5739,5743,共6页
从一维细胞自动机模型入手,设计了一种求解二元离散优化问题的二元粒子群算法细胞自动机模型(BPSO-CA)。粒子从起始细胞出发,根据本身携带的信息并感知存储在细胞中的全局最优粒子位置的信息随机选择状态(0或1),从而实现复杂智能的"... 从一维细胞自动机模型入手,设计了一种求解二元离散优化问题的二元粒子群算法细胞自动机模型(BPSO-CA)。粒子从起始细胞出发,根据本身携带的信息并感知存储在细胞中的全局最优粒子位置的信息随机选择状态(0或1),从而实现复杂智能的"涌现"。然后将其用来求解多维0/1背包问题,同时引入贪心算法对不符合约束条件的非法个体进行修正。通过对Zuse Institute Berlin公布的测试集进行实验,表明该模型能在多项式时间内完成求解过程,且实验结果优于测试集记录的结果。 展开更多
关键词 二元粒子群算法(BPSO) 细胞自动机(CA) 贪心算法 多维0/1背包问题 NPC问题
下载PDF
Big Data Flow Adjustment Using Knapsack Problem
5
作者 Eyman Yosef Ahmed Salama M. Elsayed Wahed 《Journal of Computer and Communications》 2018年第10期30-39,共10页
The advancements of mobile devices, public networks and the Internet of creature huge amounts of complex data, both construct & unstructured are being captured in trust to allow organizations to produce better bus... The advancements of mobile devices, public networks and the Internet of creature huge amounts of complex data, both construct & unstructured are being captured in trust to allow organizations to produce better business decisions as data is now pivotal for an organizations success. These enormous amounts of data are referred to as Big Data, which enables a competitive advantage over rivals when processed and analyzed appropriately. However Big Data Analytics has a few concerns including Management of Data, Privacy & Security, getting optimal path for transport data, and Data Representation. However, the structure of network does not completely match transportation demand, i.e., there still exist a few bottlenecks in the network. This paper presents a new approach to get the optimal path of valuable data movement through a given network based on the knapsack problem. This paper will give value for each piece of data, it depends on the importance of this data (each piece of data defined by two arguments size and value), and the approach tries to find the optimal path from source to destination, a mathematical models are developed to adjust data flows between their shortest paths based on the 0 - 1 knapsack problem. We also take out computational experience using the commercial software Gurobi and a greedy algorithm (GA), respectively. The outcome indicates that the suggest models are active and workable. This paper introduced two different algorithms to study the shortest path problems: the first algorithm studies the shortest path problems when stochastic activates and activities does not depend on weights. The second algorithm studies the shortest path problems depends on weights. 展开更多
关键词 0 - 1 knapsack problem BIG DATA BIG DATA ANALYTICS BIG DAO TA Inconsistencies
下载PDF
面向异构多背包问题的多级二进制帝国竞争算法 被引量:1
6
作者 李斌 唐志斌 《计算机应用》 CSCD 北大核心 2023年第9期2855-2867,共13页
在传统多背包问题的基础上,从典型物流服务场景中共性抽象出异构多背包问题(HMKP),并设计和定制了一种帝国竞争算法(ICA)对HMKP进行求解和评估。针对原始ICA易陷入局部最优以及0-1背包问题最优解往往在约束边界周围的特点,设计了双点自... 在传统多背包问题的基础上,从典型物流服务场景中共性抽象出异构多背包问题(HMKP),并设计和定制了一种帝国竞争算法(ICA)对HMKP进行求解和评估。针对原始ICA易陷入局部最优以及0-1背包问题最优解往往在约束边界周围的特点,设计了双点自变异策略(TPAS)和跳出局部最优算法(JLOA)对ICA进行改进,提出面向0-1背包问题的二进制帝国竞争算法(BICA)。BICA在求解35个0-1背包问题算例时展现出了全面、高效的寻优能力,基于最佳匹配值法(BMV)的BICA在第一组测试集的20个算例上能对19个算例100%找到理想最优值,在第二组测试集的15个算例上能对12个算例100%找到理想最优值,在所有对比算法中表现最优。数值结果分析表明,BICA在寻优演化中维持多极发展策略,并依托独特的种群进化方式在解空间中高效搜索理想解。在此基础上,针对HMKP强约束性和高复杂度的特性,基于BICA设计了求解HMKP的多级二进制帝国竞争算法(MLB-ICA)。分别在多个典型0-1背包问题算例组合构建的HMKP高维测试集上进行了MLB-ICA的数值实验和性能评估,结果表明虽然MLB-ICA的求解时间比Gurobi长,但求解精度提高了28%。可见,MLB-ICA能以较低的计算代价在可接受的时间范围内高效求解高维复杂的HMKP,为ICA在超大规模组合优化问题中的求解提出了可行的算法设计方案。 展开更多
关键词 0-1背包问题 异构多背包问题 帝国竞争算法 局部搜索策略 跳出局部最优机制 多级计算架构
下载PDF
大型产品结构优化问题的病毒进化遗传算法 被引量:14
7
作者 胡仕成 徐晓飞 战德臣 《计算机集成制造系统-CIMS》 EI CSCD 北大核心 2003年第3期202-205,共4页
针对一种大型产品结构的质量一成本优化问题,设计了一种病毒进化遗传算法,提出了相应的编码解码方案和适应度的计算。病毒进化遗传算法是一种协同进化算法,既实现了遗传操作在父子代群体间纵向继承进化信息进行全局搜索的功能,也实现了... 针对一种大型产品结构的质量一成本优化问题,设计了一种病毒进化遗传算法,提出了相应的编码解码方案和适应度的计算。病毒进化遗传算法是一种协同进化算法,既实现了遗传操作在父子代群体间纵向继承进化信息进行全局搜索的功能,也实现了病毒感染操作在同一代群体中横向传播进化信息进行局部搜索的功能,从而可以比遗传算法较快获得问题的满意解。最后给出了病毒进化遗传算法的试验仿真结果。 展开更多
关键词 病毒进化遗传算法 产品结构 优化决策 0/1多选择背包问题
下载PDF
可控搜索偏向的二元蚁群算法 被引量:7
8
作者 胡钢 熊伟清 +1 位作者 张翔 袁军良 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第8期1071-1080,共10页
蚁群算法按照信息素轨迹产生的偏向对解空间进行搜索.当前改进蚁群算法性能的主要方法是提高种群的多样性,少有对搜索偏向进行控制.本文以可控搜索偏向作为研究的出发点,通过对至今最优信息素更新方式的分析,得出了从任意代到算法收敛... 蚁群算法按照信息素轨迹产生的偏向对解空间进行搜索.当前改进蚁群算法性能的主要方法是提高种群的多样性,少有对搜索偏向进行控制.本文以可控搜索偏向作为研究的出发点,通过对至今最优信息素更新方式的分析,得出了从任意代到算法收敛没有发现较优解的概率下限.并以此为基础,把访问量与蚂蚁数量的关系作为控制偏向的依据,在兼顾提高种群多样性的前提下,设计了可控搜索偏向的二元蚁群算法.通过多个函数的测试以及0-1多背包问题的应用,其实验结果表明该算法有较好的搜索能力以及较快的收敛速度. 展开更多
关键词 蚁群算法 二元蚁群算法 信息素更新方式 可控搜索 函数优化 0-1多背包问题
下载PDF
Dynamic Weapon Target Assignment Based on Intuitionistic Fuzzy Entropy of Discrete Particle Swarm 被引量:17
9
作者 Yi Wang Jin Li +1 位作者 Wenlong Huang Tong Wen 《China Communications》 SCIE CSCD 2017年第1期169-179,共11页
Aiming at the problems of convergence-slow and convergence-free of Discrete Particle Swarm Optimization Algorithm(DPSO) in solving large scale or complicated discrete problem, this article proposes Intuitionistic Fuzz... Aiming at the problems of convergence-slow and convergence-free of Discrete Particle Swarm Optimization Algorithm(DPSO) in solving large scale or complicated discrete problem, this article proposes Intuitionistic Fuzzy Entropy of Discrete Particle Swarm Optimization(IFDPSO) and makes it applied to Dynamic Weapon Target Assignment(WTA). First, the strategy of choosing intuitionistic fuzzy parameters of particle swarm is defined, making intuitionistic fuzzy entropy as a basic parameter for measure and velocity mutation. Second, through analyzing the defects of DPSO, an adjusting parameter for balancing two cognition, velocity mutation mechanism and position mutation strategy are designed, and then two sets of improved and derivative algorithms for IFDPSO are put forward, which ensures the IFDPSO possibly search as much as possible sub-optimal positions and its neighborhood and the algorithm ability of searching global optimal value in solving large scale 0-1 knapsack problem is intensified. Third, focusing on the problem of WTA, some parameters including dynamic parameter for shifting firepower and constraints are designed to solve the problems of weapon target assignment. In addition, WTA Optimization Model with time and resource constraints is finally set up, which also intensifies the algorithm ability of searching global and local best value in the solution of WTA problem. Finally, the superiority of IFDPSO is proved by several simulation experiments. Particularly, IFDPSO, IFDPSO1~IFDPSO3 are respectively effective in solving large scale, medium scale or strict constraint problems such as 0-1 knapsack problem and WTA problem. 展开更多
关键词 intuitionistic fuzzy entropy discrete particle swarm optimization algorithm 0-1 knapsack problem weapon target assignment
下载PDF
A New Searching Strategy for the Lost Plane Based on RBF Neural Network Model and Global Optimization Model
10
作者 Yiqing YU 《International Journal of Technology Management》 2015年第4期126-128,共3页
In this paper, we construct two models for the searching task for a lost plane. Model 1 determines the searching area. We predict the trajectory of floats generated after the disintegration of the plane by using RBF n... In this paper, we construct two models for the searching task for a lost plane. Model 1 determines the searching area. We predict the trajectory of floats generated after the disintegration of the plane by using RBF neural network model, and then determine the searching area according to the trajectory. With the pass of time, the searching area will also be constantly moving along the trajectory. Model 2 develops a maritime search plan to achieve the purpose of completing the search in the shortest time. We optimize the searching time and transform the problem into the 0-1 knapsack problem. Solving this problem by improved genetic algorithm, we can get the shortest searching time and the best choice for the search power. 展开更多
关键词 the trajectory of floats RBF neural network model Global optimization model 0-1 knapsack problem improved geneticalgorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部