We study theoretically Josephson effect in a planar ballistic junction between two triplet superconductors with pwave orbital symmetries and separated by a two-dimensional(2D)semiconductor channel with strong Rashba s...We study theoretically Josephson effect in a planar ballistic junction between two triplet superconductors with pwave orbital symmetries and separated by a two-dimensional(2D)semiconductor channel with strong Rashba spin–orbit coupling.In triplet superconductors,three types of orbital symmetries are considered.We use Bogoliubov–de Gennes formalism to describe quasiparticle propagations through the junction and the supercurrents are calculated in terms of Andreev reflection coefficients.The features of the variation of the supercurrents with the change of the strength of Rashba spin–orbit coupling are investigated in some detail.It is found that for the three types of orbital symmetries considered,both the magnitudes of supercurrent and the current-phase relations can be manipulated effectively by tuning the strength of Rashba spin–orbit coupling.The interplay of Rashba spin–orbit coupling and Zeeman magnetic field on supercurrent is also investigated in some detail.展开更多
The spin superconductor state is the spin-polarized triplet exciton condensate,which can be viewed as a counterpart of the charge superconductor state.As an analogy of the charge Josephson effect,the spin Josephson ef...The spin superconductor state is the spin-polarized triplet exciton condensate,which can be viewed as a counterpart of the charge superconductor state.As an analogy of the charge Josephson effect,the spin Josephson effect can be generated in the spin superconductor/normal metal/spin superconductor junctions.Here we study the spin supercurrent in the Josephson junctions consisting of two spin superconductors with noncollinear spin polarizations.For the Josephson junctions with out-of-plane spin polarizations,the possibleπ-state spin supercurrent appears due to the Fermi momentum-splitting Andreev-like reflections at the normal metal/spin superconductor interfaces.For the Josephson junctions with in-plane spin polarizations,the anomalous spin supercurrent appears and is driven by the misorientation angle of the in-plane polarizations.The symmetry analysis shows that the appearance of the anomalous spin Josephson current is possible when the combined symmetry of the spin rotation and the time reversal is broken.展开更多
文摘We study theoretically Josephson effect in a planar ballistic junction between two triplet superconductors with pwave orbital symmetries and separated by a two-dimensional(2D)semiconductor channel with strong Rashba spin–orbit coupling.In triplet superconductors,three types of orbital symmetries are considered.We use Bogoliubov–de Gennes formalism to describe quasiparticle propagations through the junction and the supercurrents are calculated in terms of Andreev reflection coefficients.The features of the variation of the supercurrents with the change of the strength of Rashba spin–orbit coupling are investigated in some detail.It is found that for the three types of orbital symmetries considered,both the magnitudes of supercurrent and the current-phase relations can be manipulated effectively by tuning the strength of Rashba spin–orbit coupling.The interplay of Rashba spin–orbit coupling and Zeeman magnetic field on supercurrent is also investigated in some detail.
基金Project supported by the National Key R&D Program of China(Grant No.2022YFA1403601).
文摘The spin superconductor state is the spin-polarized triplet exciton condensate,which can be viewed as a counterpart of the charge superconductor state.As an analogy of the charge Josephson effect,the spin Josephson effect can be generated in the spin superconductor/normal metal/spin superconductor junctions.Here we study the spin supercurrent in the Josephson junctions consisting of two spin superconductors with noncollinear spin polarizations.For the Josephson junctions with out-of-plane spin polarizations,the possibleπ-state spin supercurrent appears due to the Fermi momentum-splitting Andreev-like reflections at the normal metal/spin superconductor interfaces.For the Josephson junctions with in-plane spin polarizations,the anomalous spin supercurrent appears and is driven by the misorientation angle of the in-plane polarizations.The symmetry analysis shows that the appearance of the anomalous spin Josephson current is possible when the combined symmetry of the spin rotation and the time reversal is broken.