The influence of heat treating on mechanical properties as well as on the sliding wear behavior of sintered Fe-1.5Mo-0.7C steels was experimentally studied. The microstruc-tures of sintered steels change from upper ba...The influence of heat treating on mechanical properties as well as on the sliding wear behavior of sintered Fe-1.5Mo-0.7C steels was experimentally studied. The microstruc-tures of sintered steels change from upper bainite to martensite, tempered martensite, pearlite and lower bainite depending on the heat treating conditions. Heat treating increases the hardness of sintered steels but high tempering temperature, i.e. 700℃, causes the hardness to be even lower than that of the as-sintered ones. The impact energy of sintered steels increases with increasing tempering temperature and arrives the highest at 700℃, while the steels tempered at 200℃ have the highest transverse rupture strength. Austempering results in fair good overall properties, such as hardness, impact energy, and transverse rupture strength. When the sintered steels were austempered, oil-quenched or tempered below 400? after quenched, the wear coefficient becomes considerably lower. Fair high hardness, such as HV30 】 380, and structures of martensite, tempered martensite or lower bainite are beneficial to lowering the wear coefficient. Under the wear test conditions given, delamination and oxidational wear are the main wear regimes for sintered Fe-1.5Mo-0.7C steels. Fe3O4 in the wear debris is beneficial to lowering wear coefficient.展开更多
基金The authors would like to thank OAD (Austrian Academic Exchange Service) and the Chinese Ministry of Education as well as the Shanghai Municaipal Commission of Education for financial support.
文摘The influence of heat treating on mechanical properties as well as on the sliding wear behavior of sintered Fe-1.5Mo-0.7C steels was experimentally studied. The microstruc-tures of sintered steels change from upper bainite to martensite, tempered martensite, pearlite and lower bainite depending on the heat treating conditions. Heat treating increases the hardness of sintered steels but high tempering temperature, i.e. 700℃, causes the hardness to be even lower than that of the as-sintered ones. The impact energy of sintered steels increases with increasing tempering temperature and arrives the highest at 700℃, while the steels tempered at 200℃ have the highest transverse rupture strength. Austempering results in fair good overall properties, such as hardness, impact energy, and transverse rupture strength. When the sintered steels were austempered, oil-quenched or tempered below 400? after quenched, the wear coefficient becomes considerably lower. Fair high hardness, such as HV30 】 380, and structures of martensite, tempered martensite or lower bainite are beneficial to lowering the wear coefficient. Under the wear test conditions given, delamination and oxidational wear are the main wear regimes for sintered Fe-1.5Mo-0.7C steels. Fe3O4 in the wear debris is beneficial to lowering wear coefficient.