The separation of ethylene glycol(EG)and 1,2-butanediol(1,2-BDO)azeotrope in the synthesis process of EG via coal and biomass is becoming of increasing commercial and environmental importance.Selective adsorption is d...The separation of ethylene glycol(EG)and 1,2-butanediol(1,2-BDO)azeotrope in the synthesis process of EG via coal and biomass is becoming of increasing commercial and environmental importance.Selective adsorption is deemed as the most promising methods because of energy saving and environment favorable.In this paper,NaY zeolite was used to separate 1,2-BDO from EG,and its adsorption properties was then investigated.The isotherms of EG and 1,2-BDO in vapor and liquid phases from 298 to 328 K indicated that they fitted Langmuir model quite well,and the NaY zeolite absorbent favored EG more than 1,2-BDO.The Grand Canonical Monte Carlo(GCMC)and molecular dynamics(MD)simulation techniques were conducted to investigate the competition adsorption and diffusion characteristics in different adsorption regions.It was observed that EG and 1,2-BDO molecules all have the most probable locations of the center of the 12-membered ring near the Na cations.The diffusivities of EG are lower than those of 1,2-BDO at the same adsorption concentration.At last,the breakthrough curves of the binary mixture regressed from the empirical Dose–Response model in fixed-bed column showed that the adsorption selectivity of EG could reach to as high as 2.43,verified that the NaY zeolite could effectively separate EG from 1,2-BDO.This work is also helpful for further separation of other dihydric alcohol mixtures from coal and biomass fermentation.展开更多
MnOx-promoted Ni-based catalyst supported by ZnO was developed to selectively hydrogenate glucose into polyols in water at 523 K with a yield of 64.9%. Using glucose, sorbitol, glycerol and LA as the rawmaterials, the...MnOx-promoted Ni-based catalyst supported by ZnO was developed to selectively hydrogenate glucose into polyols in water at 523 K with a yield of 64.9%. Using glucose, sorbitol, glycerol and LA as the rawmaterials, the roles of nickel, ZnO and MnOx were investigated. The results show that nickel provided a new pathway of glucose to sorbitol and played an important role in the hydrogenation of C3 intermediates to 1,2-propanediol(1,2-PDO). The high yield of 1, 2-PDO was attributed to effective C–C bond cleavage performance of ZnO support promoted by MnOx. ZnO and MnOx contribute to the conversion of glycerol to lactic acid(LA) and LA to 1, 2-PDO, respectively. A concise pathway for hydrogenation of glucose over Ni-based catalyst was proposed.展开更多
基金the National Natural Science Foundation of China(21576272)“Transformational Technologies for Clean Energy and Demonstration”Strategic Priority Research Program of Chinese Academy of Sciences,Grant No.XDA 21030600,Science and Technology Service Network Initiative,Chinese Academy of Sciences(KFJ-STS-QYZD-138).
文摘The separation of ethylene glycol(EG)and 1,2-butanediol(1,2-BDO)azeotrope in the synthesis process of EG via coal and biomass is becoming of increasing commercial and environmental importance.Selective adsorption is deemed as the most promising methods because of energy saving and environment favorable.In this paper,NaY zeolite was used to separate 1,2-BDO from EG,and its adsorption properties was then investigated.The isotherms of EG and 1,2-BDO in vapor and liquid phases from 298 to 328 K indicated that they fitted Langmuir model quite well,and the NaY zeolite absorbent favored EG more than 1,2-BDO.The Grand Canonical Monte Carlo(GCMC)and molecular dynamics(MD)simulation techniques were conducted to investigate the competition adsorption and diffusion characteristics in different adsorption regions.It was observed that EG and 1,2-BDO molecules all have the most probable locations of the center of the 12-membered ring near the Na cations.The diffusivities of EG are lower than those of 1,2-BDO at the same adsorption concentration.At last,the breakthrough curves of the binary mixture regressed from the empirical Dose–Response model in fixed-bed column showed that the adsorption selectivity of EG could reach to as high as 2.43,verified that the NaY zeolite could effectively separate EG from 1,2-BDO.This work is also helpful for further separation of other dihydric alcohol mixtures from coal and biomass fermentation.
基金financially supported by the National Science Foundation of China (21671132)Shanghai Science and Technology Committee(16dz1207200)the Youth Innovation Promotion Association CAS(2015231)
文摘MnOx-promoted Ni-based catalyst supported by ZnO was developed to selectively hydrogenate glucose into polyols in water at 523 K with a yield of 64.9%. Using glucose, sorbitol, glycerol and LA as the rawmaterials, the roles of nickel, ZnO and MnOx were investigated. The results show that nickel provided a new pathway of glucose to sorbitol and played an important role in the hydrogenation of C3 intermediates to 1,2-propanediol(1,2-PDO). The high yield of 1, 2-PDO was attributed to effective C–C bond cleavage performance of ZnO support promoted by MnOx. ZnO and MnOx contribute to the conversion of glycerol to lactic acid(LA) and LA to 1, 2-PDO, respectively. A concise pathway for hydrogenation of glucose over Ni-based catalyst was proposed.