Using dispersion corrected density functional theory,we systematically examined the pressure effect on crystal structure,cell volume,and band gap of 1,3,5-triamino-2,4,6-trinitrobenzene(TATB)to understand its extraord...Using dispersion corrected density functional theory,we systematically examined the pressure effect on crystal structure,cell volume,and band gap of 1,3,5-triamino-2,4,6-trinitrobenzene(TATB)to understand its extraordinary chemical stability.Analysis of the Mulliken population and the electron density of states implied a possible charge transfer in TATB with increasing pressure.Raman and infrared spectra of TATB under hydrostatic pressure up to 30 GPa were simulated.The observed strong coupling between NH_2 groups and NO_(2) groups with increasing pressure,which is considered to have a tendency of energy transfer with these vibrational modes,was analyzed.The pressure-induced frequency shift of selected vibrational modes indicated minor changes of molecular conformation mainly by the rotation of NH_(2) groups.Compression behavior and spectroscopic property studies are expected to shed light on the physical and chemical properties of TATB on an atomistic scale.展开更多
The ultrafine 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) has been prepared by using solvent and non-solvent method, and the influencing factors in close relationship with the grain size and crystal morphology contr...The ultrafine 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) has been prepared by using solvent and non-solvent method, and the influencing factors in close relationship with the grain size and crystal morphology control such as categories and dosage of surfactants, volume ratio of solvent to non-solvent have also been considered in this paper. It showed that these factors had remarkable effect on the crystal morphology, particle size and agglomeration during the crystallization process. By using 0.095% (mass percentage) ionic surfactant (S) as the additive and using spray-drops feeding device as the dropping equipment, 1.06 g TATB raw materials have been refined into free-running ellipsoid and spherical TATB grains with the grain size from 30 to 50 nm. By using 0.014% (mass percentage) non-ionic surfactant (P) as the additive, spherical TATB grains with the particle diameter of 50 nm and with narrow particle-size distribution have also been obtained. It was shown by the characterizations that the ultrafine particle of TATB had better heat resisting evenness and its 5 seconds ignition point is advanced by 7.5 K.展开更多
基金Project supported by the Science Challenge Project of China(Grant No.TZ2016001)the National Natural Science Foundation of China(Grant Nos.11674046and 11372053)+2 种基金the Fundamental Research Funds for the Central Universities of China(Grant No.DUT17GF203)the Opening Project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,China(Grant No.KFJJ16-01M)the Supercomputing Center of Dalian University of Technology,China
文摘Using dispersion corrected density functional theory,we systematically examined the pressure effect on crystal structure,cell volume,and band gap of 1,3,5-triamino-2,4,6-trinitrobenzene(TATB)to understand its extraordinary chemical stability.Analysis of the Mulliken population and the electron density of states implied a possible charge transfer in TATB with increasing pressure.Raman and infrared spectra of TATB under hydrostatic pressure up to 30 GPa were simulated.The observed strong coupling between NH_2 groups and NO_(2) groups with increasing pressure,which is considered to have a tendency of energy transfer with these vibrational modes,was analyzed.The pressure-induced frequency shift of selected vibrational modes indicated minor changes of molecular conformation mainly by the rotation of NH_(2) groups.Compression behavior and spectroscopic property studies are expected to shed light on the physical and chemical properties of TATB on an atomistic scale.
文摘The ultrafine 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) has been prepared by using solvent and non-solvent method, and the influencing factors in close relationship with the grain size and crystal morphology control such as categories and dosage of surfactants, volume ratio of solvent to non-solvent have also been considered in this paper. It showed that these factors had remarkable effect on the crystal morphology, particle size and agglomeration during the crystallization process. By using 0.095% (mass percentage) ionic surfactant (S) as the additive and using spray-drops feeding device as the dropping equipment, 1.06 g TATB raw materials have been refined into free-running ellipsoid and spherical TATB grains with the grain size from 30 to 50 nm. By using 0.014% (mass percentage) non-ionic surfactant (P) as the additive, spherical TATB grains with the particle diameter of 50 nm and with narrow particle-size distribution have also been obtained. It was shown by the characterizations that the ultrafine particle of TATB had better heat resisting evenness and its 5 seconds ignition point is advanced by 7.5 K.