Nine title compounds were synthesized. Their strucures were identified by means of IR, EA, 1H NMR and MS. The results from the primary biological test show that all the compounds have some activitiies of fungicide and...Nine title compounds were synthesized. Their strucures were identified by means of IR, EA, 1H NMR and MS. The results from the primary biological test show that all the compounds have some activitiies of fungicide and plant growth regulator. When R group is 2,4 Cl 2C 6H 3, compound 2 or compound 4 shows better biological activities.展开更多
1,3-dioxolane (DOL) was originally used to pretreat a lithium metal electrode to improve its interfacial characteristics. Electrochemical impedance spectra (EIS) meastLrements revealed that, after the DOL pretreat...1,3-dioxolane (DOL) was originally used to pretreat a lithium metal electrode to improve its interfacial characteristics. Electrochemical impedance spectra (EIS) meastLrements revealed that, after the DOL pretreatment, the lithium electrode had better interfacial stability during immersion in electrolyte and as repeated charge/discharge cycles. It was proved by SEaM that the pretreated one has smoother morphology and less dendrite after repeated charge/discharge cycles. Consequentially, benefiting from the better interface characteristics of the lithium electrode, the rechargeable lithium cell with a DOL-pretreated lithium anode had the obviously enhanced discharging performance and better cyclability.展开更多
1,3-dioxolane (DOL) is originally used to pretreat the lithium metal electrode in order to passivate lithium metal and improve its interface stability. Through electrochemical impedance spectra (EIS) and cathodic pola...1,3-dioxolane (DOL) is originally used to pretreat the lithium metal electrode in order to passivate lithium metal and improve its interface stability. Through electrochemical impedance spectra (EIS) and cathodic polarization measurements of pretreated and untreated electrodes, it was found that 1,3-dioxolane could form a stable passivating film on the surface of lithium electrode. And such film could enhance effectively the interfacial stability of lithium electrode, without depressing its kinetics characteristic. Consequentially, further tests of the cell-performance during repeated charge/discharge cycles showed that the cell with DOL pretreated anode had better discharging performance and longer cycle life because of the passivating and protective effects of 1,3-dioxolane pretreatment on lithium electrode.展开更多
1,3-dioxolane (DOL) was originally used to pretreat a lithium metal electrode to improve its interfacial characteristics. Electrochemical impedance spectra (EIS) measurements revealed that,after the DOL pretreatment,t...1,3-dioxolane (DOL) was originally used to pretreat a lithium metal electrode to improve its interfacial characteristics. Electrochemical impedance spectra (EIS) measurements revealed that,after the DOL pretreatment,the lithium electrode had better interfacial stability during immersion in electrolyte and as repeated charge/discharge cycles. It was proved by SEM that the pretreated one has smoother morphology and less dendrite after repeated charge/discharge cycles. Consequentially,benefiting from the better interface characteristics of the lithium electrode,the rechargeable lithium cell with a DOL-pretreated lithium anode had the obviously enhanced discharging performance and better cyclability.展开更多
Gel-based polymer electrolytes are limited by the polarity of the residual solvent,which restricts the coupling-breaking behaviour during Li^(+)conduction,resulting in the Li^(+)transport kinetics being greatly affect...Gel-based polymer electrolytes are limited by the polarity of the residual solvent,which restricts the coupling-breaking behaviour during Li^(+)conduction,resulting in the Li^(+)transport kinetics being greatly affected.Here,we designed anion competitive gel polymer electrolyte(ACPE)by introducing lithium difluoro(oxalato)borate(LiDFOB)anion into the 1,3-dioxolane(DOL)in situ polymerisation system.ACPE enhances the ionic dipole interaction between Li^(+)and the solvent molecules and synergizes with Li^(+)across the solvation site of the polymer ethylene oxide(EO)unit,combination that greatly improves the Li^(+)transport efficiency.As a result,ACPE exhibits 1.12 mS cm^(−1)ionic conductivity and 0.75 Li^(+)transfer number at room temperature.Additionally,this intra-polymer solvation sheath allows preferential desolvation of DFOB−,which contributes to the formation of kinetically stable anion-derived interphase and effectively mitigates side reactions.Our results demonstrate that the assembled Li||NCM622 solid-state battery exhibits lifespan of over 300 cycles with average Coulombic efficiency of 98.8%and capacity retention of 80.3%.This study introduces a novel approach for ion migration and interface design,paving the way for high-safety and high-energy-density batteries.展开更多
In the pursuit of advancing imidazolium-based energetic ionic liquids (EILs),the current study is devoted to the synthesis and characterization of 1,3-dibutyl-imidazolium azide ([BBIm][N_(3)]),as a novel member in thi...In the pursuit of advancing imidazolium-based energetic ionic liquids (EILs),the current study is devoted to the synthesis and characterization of 1,3-dibutyl-imidazolium azide ([BBIm][N_(3)]),as a novel member in this ionic liquids class.The chemical structure of this EIL was rigorously characterized and confirmed using FTIR spectroscopy,1D,and 2D-NMR analyses.The thermal behavior assessment was conducted through DSC and TGA experiments.DSC analysis revealed an endothermic glass transition at T_(g)=-61℃,followed by an exothermic degradation event at T_(onset)=311℃.Similarly,TGA thermograms exhibited a one-stage decomposition process resulting in 100% mass loss of the sample.Furthermore,the short-term thermal stability of the azide EIL was investigated by combining the non-isothermal TGA data with the TAS,it-KAS,and VYA/CE isoconversional kinetic approaches.Consequently,the Arrhenius parameters(E_(a)=154 kJ·mol^(-1),Log(A/s^(-1))=11.8) and the most probable reaction model g(a) were determined.The observed high decomposition temperatures and the significantly elevated activation energy affirm the enhanced thermal stability of the modified EIL.These findings revealed that[BBIm][N_(3)]EIL can be a promising candidate for advanced energetic material application.展开更多
基金Supported by the Natural Science Foudation of Shandong Province(No.Q 99B16 ) and the National Natural ScienceFoundation of China(No.2 0 0 75 0 13)
文摘Nine title compounds were synthesized. Their strucures were identified by means of IR, EA, 1H NMR and MS. The results from the primary biological test show that all the compounds have some activitiies of fungicide and plant growth regulator. When R group is 2,4 Cl 2C 6H 3, compound 2 or compound 4 shows better biological activities.
基金This project was financially supported by the Foundation of Science-Technology Research Program of Guangdong Prov-ince, China (No. 2003C105006).
文摘1,3-dioxolane (DOL) was originally used to pretreat a lithium metal electrode to improve its interfacial characteristics. Electrochemical impedance spectra (EIS) meastLrements revealed that, after the DOL pretreatment, the lithium electrode had better interfacial stability during immersion in electrolyte and as repeated charge/discharge cycles. It was proved by SEaM that the pretreated one has smoother morphology and less dendrite after repeated charge/discharge cycles. Consequentially, benefiting from the better interface characteristics of the lithium electrode, the rechargeable lithium cell with a DOL-pretreated lithium anode had the obviously enhanced discharging performance and better cyclability.
文摘1,3-dioxolane (DOL) is originally used to pretreat the lithium metal electrode in order to passivate lithium metal and improve its interface stability. Through electrochemical impedance spectra (EIS) and cathodic polarization measurements of pretreated and untreated electrodes, it was found that 1,3-dioxolane could form a stable passivating film on the surface of lithium electrode. And such film could enhance effectively the interfacial stability of lithium electrode, without depressing its kinetics characteristic. Consequentially, further tests of the cell-performance during repeated charge/discharge cycles showed that the cell with DOL pretreated anode had better discharging performance and longer cycle life because of the passivating and protective effects of 1,3-dioxolane pretreatment on lithium electrode.
文摘1,3-dioxolane (DOL) was originally used to pretreat a lithium metal electrode to improve its interfacial characteristics. Electrochemical impedance spectra (EIS) measurements revealed that,after the DOL pretreatment,the lithium electrode had better interfacial stability during immersion in electrolyte and as repeated charge/discharge cycles. It was proved by SEM that the pretreated one has smoother morphology and less dendrite after repeated charge/discharge cycles. Consequentially,benefiting from the better interface characteristics of the lithium electrode,the rechargeable lithium cell with a DOL-pretreated lithium anode had the obviously enhanced discharging performance and better cyclability.
基金supported by the National Natural Science Foundation of China(22008053,52002111)the Natural Science Foundation of Hebei Province(B2021208061,B2022208006,B2023208014)the Beijing Natural Science Foundation(Z200011).
文摘Gel-based polymer electrolytes are limited by the polarity of the residual solvent,which restricts the coupling-breaking behaviour during Li^(+)conduction,resulting in the Li^(+)transport kinetics being greatly affected.Here,we designed anion competitive gel polymer electrolyte(ACPE)by introducing lithium difluoro(oxalato)borate(LiDFOB)anion into the 1,3-dioxolane(DOL)in situ polymerisation system.ACPE enhances the ionic dipole interaction between Li^(+)and the solvent molecules and synergizes with Li^(+)across the solvation site of the polymer ethylene oxide(EO)unit,combination that greatly improves the Li^(+)transport efficiency.As a result,ACPE exhibits 1.12 mS cm^(−1)ionic conductivity and 0.75 Li^(+)transfer number at room temperature.Additionally,this intra-polymer solvation sheath allows preferential desolvation of DFOB−,which contributes to the formation of kinetically stable anion-derived interphase and effectively mitigates side reactions.Our results demonstrate that the assembled Li||NCM622 solid-state battery exhibits lifespan of over 300 cycles with average Coulombic efficiency of 98.8%and capacity retention of 80.3%.This study introduces a novel approach for ion migration and interface design,paving the way for high-safety and high-energy-density batteries.
文摘In the pursuit of advancing imidazolium-based energetic ionic liquids (EILs),the current study is devoted to the synthesis and characterization of 1,3-dibutyl-imidazolium azide ([BBIm][N_(3)]),as a novel member in this ionic liquids class.The chemical structure of this EIL was rigorously characterized and confirmed using FTIR spectroscopy,1D,and 2D-NMR analyses.The thermal behavior assessment was conducted through DSC and TGA experiments.DSC analysis revealed an endothermic glass transition at T_(g)=-61℃,followed by an exothermic degradation event at T_(onset)=311℃.Similarly,TGA thermograms exhibited a one-stage decomposition process resulting in 100% mass loss of the sample.Furthermore,the short-term thermal stability of the azide EIL was investigated by combining the non-isothermal TGA data with the TAS,it-KAS,and VYA/CE isoconversional kinetic approaches.Consequently,the Arrhenius parameters(E_(a)=154 kJ·mol^(-1),Log(A/s^(-1))=11.8) and the most probable reaction model g(a) were determined.The observed high decomposition temperatures and the significantly elevated activation energy affirm the enhanced thermal stability of the modified EIL.These findings revealed that[BBIm][N_(3)]EIL can be a promising candidate for advanced energetic material application.