Indanone-containing compounds are very important components of various natural products,chemical drugs,agrochemicals and functionalized material fields.1,3-Indanedione is a typical cyclic 1,3-dicarbonyl compound with ...Indanone-containing compounds are very important components of various natural products,chemical drugs,agrochemicals and functionalized material fields.1,3-Indanedione is a typical cyclic 1,3-dicarbonyl compound with three contiguous reactive electrophilic and nucleophilic sites.The easily prepared 2-arylidene-1,3-indanediones are activeα,β-unsaturated carbonyl compounds and could act as 1,3-dipolarophile,1,4-dienophile and 1-oxa-1,3-diene,etc.On the other hand,the homodimer(bindone)and cyclotrimer(truxenone)derived from basecatalyzed self-condensation of 1,3-indanedione are also reactive carbonyl compounds.Therefore,1,3-indanedione and its derivatives can be employed as key substrates in various domino and multicomponent reactions.In this review,we summarized the recent progress on the domino and multicomponent reactions of 1,3-indanedione,especially on our achievements on the synthetic applications for the complex indanone-containing carbocyclic and heterocyclic compounds.展开更多
In the pursuit of advancing imidazolium-based energetic ionic liquids (EILs),the current study is devoted to the synthesis and characterization of 1,3-dibutyl-imidazolium azide ([BBIm][N_(3)]),as a novel member in thi...In the pursuit of advancing imidazolium-based energetic ionic liquids (EILs),the current study is devoted to the synthesis and characterization of 1,3-dibutyl-imidazolium azide ([BBIm][N_(3)]),as a novel member in this ionic liquids class.The chemical structure of this EIL was rigorously characterized and confirmed using FTIR spectroscopy,1D,and 2D-NMR analyses.The thermal behavior assessment was conducted through DSC and TGA experiments.DSC analysis revealed an endothermic glass transition at T_(g)=-61℃,followed by an exothermic degradation event at T_(onset)=311℃.Similarly,TGA thermograms exhibited a one-stage decomposition process resulting in 100% mass loss of the sample.Furthermore,the short-term thermal stability of the azide EIL was investigated by combining the non-isothermal TGA data with the TAS,it-KAS,and VYA/CE isoconversional kinetic approaches.Consequently,the Arrhenius parameters(E_(a)=154 kJ·mol^(-1),Log(A/s^(-1))=11.8) and the most probable reaction model g(a) were determined.The observed high decomposition temperatures and the significantly elevated activation energy affirm the enhanced thermal stability of the modified EIL.These findings revealed that[BBIm][N_(3)]EIL can be a promising candidate for advanced energetic material application.展开更多
基金supported by the National Natural Science Foundation of China(No.21871227).
文摘Indanone-containing compounds are very important components of various natural products,chemical drugs,agrochemicals and functionalized material fields.1,3-Indanedione is a typical cyclic 1,3-dicarbonyl compound with three contiguous reactive electrophilic and nucleophilic sites.The easily prepared 2-arylidene-1,3-indanediones are activeα,β-unsaturated carbonyl compounds and could act as 1,3-dipolarophile,1,4-dienophile and 1-oxa-1,3-diene,etc.On the other hand,the homodimer(bindone)and cyclotrimer(truxenone)derived from basecatalyzed self-condensation of 1,3-indanedione are also reactive carbonyl compounds.Therefore,1,3-indanedione and its derivatives can be employed as key substrates in various domino and multicomponent reactions.In this review,we summarized the recent progress on the domino and multicomponent reactions of 1,3-indanedione,especially on our achievements on the synthetic applications for the complex indanone-containing carbocyclic and heterocyclic compounds.
文摘In the pursuit of advancing imidazolium-based energetic ionic liquids (EILs),the current study is devoted to the synthesis and characterization of 1,3-dibutyl-imidazolium azide ([BBIm][N_(3)]),as a novel member in this ionic liquids class.The chemical structure of this EIL was rigorously characterized and confirmed using FTIR spectroscopy,1D,and 2D-NMR analyses.The thermal behavior assessment was conducted through DSC and TGA experiments.DSC analysis revealed an endothermic glass transition at T_(g)=-61℃,followed by an exothermic degradation event at T_(onset)=311℃.Similarly,TGA thermograms exhibited a one-stage decomposition process resulting in 100% mass loss of the sample.Furthermore,the short-term thermal stability of the azide EIL was investigated by combining the non-isothermal TGA data with the TAS,it-KAS,and VYA/CE isoconversional kinetic approaches.Consequently,the Arrhenius parameters(E_(a)=154 kJ·mol^(-1),Log(A/s^(-1))=11.8) and the most probable reaction model g(a) were determined.The observed high decomposition temperatures and the significantly elevated activation energy affirm the enhanced thermal stability of the modified EIL.These findings revealed that[BBIm][N_(3)]EIL can be a promising candidate for advanced energetic material application.