Excessive N-acetyl-p-benzoquinone imine(NAPQI)formation is a starting event that triggers oxidative stress and subsequent hepatocyte necrosis in acetaminophen(APAP)overdose caused acute liver failure(ALF).S-glutathion...Excessive N-acetyl-p-benzoquinone imine(NAPQI)formation is a starting event that triggers oxidative stress and subsequent hepatocyte necrosis in acetaminophen(APAP)overdose caused acute liver failure(ALF).S-glutathionylation is a reversible redox post-translational modification and a prospective mechanism of APAP hepatotoxicity.Glutaredoxin-1(Glrx1),a glutathione-specific thioltransferase,is a primary enzyme to catalyze deglutathionylation.The objective of this study was to explored whether and how Glrx1 is associated with the development of ALF induced by APAP.The Glrx1 knockout mice(Glrx1^(-/-))and liver-specific overexpression of Glrx1(AAV8-Glrx1)mice were produced and underwent APAPinduced ALF.Pirfenidone(PFD),a potential inducer of Glrx1,was administrated preceding APAP to assess its protective effects.Our results revealed that the hepatic total protein S-glutathionylation(PSSG)increased and the Glrx1 level reduced in mice after APAP toxicity.Glrx1^(-/-)mice were more sensitive to APAP overdose,with higher oxidative stress and more toxic metabolites of APAP.This was attributed to Glrx1 deficiency increasing the total hepatic PSSG and the S-glutathionylation of cytochrome p4503a11(Cyp3a11),which likely increased the activity of Cyp3a11.Conversely,AAV8-Glrx1 mice were defended against liver damage caused by APAP overdose by inhibiting the S-glutathionylation and activity of Cyp3a11,which reduced the toxic metabolites of APAP and oxidative stress.PFD precede administration upregulated Glrx1 expression and alleviated APAP-induced ALF by decreasing oxidative stress.We have identified the function of Glrx1 mediated PSSG in liver injury caused by APAP overdose.Increasing Glrx1 expression may be investigated for the medical treatment of APAP-caused hepatic injury.展开更多
With the hypothesis that iron(Fe) deficiency responsive genes may play a role in Fe toxicity conditions,we studied five such genes OsNAS1,OsNAS3,OsIRO2,OsIRO3 and OsYSL16 across six contrasting rice genotypes for expr...With the hypothesis that iron(Fe) deficiency responsive genes may play a role in Fe toxicity conditions,we studied five such genes OsNAS1,OsNAS3,OsIRO2,OsIRO3 and OsYSL16 across six contrasting rice genotypes for expression under high Fe and low phosphorus(P) conditions,and sequence polymorphism.Genotypes Sahbhagi Dhan,Chakhao Poirieton and Shasharang were high yielders with no bronzing symptom visible under Fe toxic field conditions,and BAM350 and BAM811 were low yielders but did not show bronzing symptoms.Hydroponic screening revealed that the number of crown roots and root length can be traits for consideration for identifying Fe toxicity tolerance in rice genotypes.Fe contents in rice roots and shoots of a high-yielding genotype KMR3 showing leaf bronzing were significantly high.In response to 24 h high Fe stress,the expression levels of OsNAS3 were up-regulated in all genotypes except KMR3.In response to 48 h high Fe stress,the expression levels of OsNAS1 were3-fold higher in tolerant Shasharang,whereas in KMR3,it was significantly down-regulated.Even in response to 7 d excess Fe stress,the transcript abundances of OsIRO2 and OsNAS3 were contrasting in genotypes Shasharang and KMR3.This suggested that the reported Fe deficiency genes had a role in Fe toxicity and that in genotype KMR3 under excess Fe stress,there was disruption of metal homeostasis.Under the 48 h low P conditions,OsIRO2 and OsYSL16 were significantly up-regulated in Fe tolerant genotype Shasharang and in low P tolerant genotype Chakhao Poirieton,respectively.In silico sequence analysis across 3 024 rice genotypes revealed polymorphism for 4 genes.Sequencing across OsIRO3and OsNAS3 revealed nucleotide polymorphism between tolerant and susceptible genotypes for Fe toxicity.Non-synonymous single nucleotide polymorphisms and insertion/deletions(InDels) differing in tolerant and susceptible genotypes were identified.A marker targeting 25-bp InDel in OsIRO3,when run on a diverse panel of 43 rice genotypes and a biparental population,was associated with superior performance for yield under acidic lowland field conditions.This study highlights the potential of one of the vital genes involved in Fe homeostasis as a genic target for improving rice yield in acidic soils.展开更多
Ferroptosis is a type of programmed cell death dependent on iron.It is different from other forms of cell death such as apoptosis,classic necrosis and autophagy.Ferroptosis is involved in many neurodegenerative diseas...Ferroptosis is a type of programmed cell death dependent on iron.It is different from other forms of cell death such as apoptosis,classic necrosis and autophagy.Ferroptosis is involved in many neurodegenerative diseases.The role of ferroptosis in glutamate-induced neuronal toxicity is not fully understood.To test its toxicity,glutamate(1.25–20 mM)was applied to HT-22 cells for 12 to 48 hours.The optimal experimental conditions occurred at 12 hours after incubation with 5 mM glutamate.Cells were cultured with 3–12μM ferrostatin-1,an inhibitor of ferroptosis,for 12 hours before exposure to glutamate.The cell viability was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Autophagy was determined by monodansylcadaverine staining and apoptosis by caspase 3 activity.Damage to cell structures was observed under light and by transmission electron microscopy.The release of lactate dehydrogenase was detected by the commercial kit.Reactive oxygen species were measured by flow cytometry.Glutathione peroxidase activity,superoxide dismutase activity and malondialdehyde level were detected by the appropriate commercial kit.Prostaglandin peroxidase synthase 2 and glutathione peroxidase 4 gene expression was detected by real-time quantitative polymerase chain reaction.Glutathione peroxidase 4 and nuclear factor erythroid-derived-like 2 protein expression was detected by western blot analysis.Results showed that ferrostatin-1 can significantly counter the effects of glutamate on HT-22 cells,improving the survival rate,reducing the release of lactate dehydrogenase and reducing the damage to mitochondrial ultrastructure.However,it did not affect the caspase-3 expression and monodansylcadaverine-positive staining in glutamate-injured HT-22 cells.Ferrostatin-1 reduced the levels of reactive oxygen species and malondialdehyde and enhanced superoxide dismutase activity.It decreased gene expression of prostaglandin peroxidase synthase 2 and increased gene expression of glutathione peroxidase 4 and protein expressions of glutathione peroxidase 4 and nuclear factor(erythroid-derived)-like 2 in glutamate-injured HT-22 cells.Treatment of cultured cells with the apoptosis inhibitor Z-Val-Ala-Asp(OMe)-fluoromethyl ketone(2–8μM),autophagy inhibitor 3-methyladenine(100–400μM)or necrosis inhibitor necrostatin-1(10–40μM)had no effect on glutamate induced cell damage.However,the iron chelator deferoxamine mesylate salt inhibited glutamate induced cell death.Thus,the results suggested that ferroptosis is caused by glutamate-induced toxicity and that ferrostatin-1 protects HT-22 cells from glutamate-induced oxidative toxicity by inhibiting the oxidative stress.展开更多
AIM: To investigate the correlation between uridine diphosphate glucuronosyl transferase 1A1 (UGT1A1) gene polymorphisms and irinotecan-associated side effects and parameters of drug efficacy in patients with metastat...AIM: To investigate the correlation between uridine diphosphate glucuronosyl transferase 1A1 (UGT1A1) gene polymorphisms and irinotecan-associated side effects and parameters of drug efficacy in patients with metastatic colorectal cancer (mCRC) receiving a low-dose weekly irinotecan chemotherapeutic regimen. METHODS: Genotypes were retrospectively evaluated by gene scan analysis on the ABI 310 sequencer of the TATAA box in the promoter region of the UGT1A1 gene in blood samples from 105 patients who had received 1st line irinotecan-based chemotherapy for mCRC. RESULTS: The distribution of the genotypes was as follows: wild type genotype (WT) (6/6 ) 39.0%, heterozygous genotype (6/7) 49.5%, and homozygous genotype (7/7) 9.5%. The overall response rate (OR) was similar between patients carrying the (6/7, 7/7) or the WT genotype (6/6) (44.3% vs 43.2%, P = 0.75). Neither time to progression [(TTP) 8.1 vs 8.2 mo, P = 0.97] nor overall survival [(OS) 21.2 vs 18.9 mo, P = 0.73] differed significantly in patients who carried the(6/6) when compared to the (6/7, 7/7) genotype. No significant differences in toxicity were observed: Grade 3 and 4 delayed diarrhoea [(6/7, 7/7) vs (6/6); 13.0% vs 6.2%, P =0.08], treatment delays [(6/7, 7/7) vs (6/6); 25.1% vs 19.3%, P = 0.24] or dose reductions [(6/7, 7/7) vs (6/6); 21.5% vs 27.2%, P = 0.07].CONCLUSION: This analysis demonstrates the non-significant influence of the UGT1A1 gene polymorphism on efficacy and rate of irinotecan-associated toxicity in mCRC patients receiving low-dose irinotecan based chemotherapy.展开更多
Many studies have demonstrated the impact of UGT1A1 on toxicity of irinotecan. In particular, patients bear-ing UGT1A1*28 (TA 7/7) have a higher risk of severe neutropenia and diarrhea. Based on this, prescribers of i...Many studies have demonstrated the impact of UGT1A1 on toxicity of irinotecan. In particular, patients bear-ing UGT1A1*28 (TA 7/7) have a higher risk of severe neutropenia and diarrhea. Based on this, prescribers of irinotecan are advised that patients with UGT1A1*28 (TA 7/7) should start with a reduced dose of irinotecan, although a particular dose is not specified. Research in Asian countries has shown a lower incidence of UG-T1A1*28 (TA 7/7), while UGT1A1*6 (A/A) is more often found and is associated with severe irinotecan-related neutropenia. We report here a case of a metastatic colorectal cancer patient who is heterozygous for the UGT1A1*28 polymorphism (TA 6/7) as well as the UG-T1A1*6 polymorphism (G/A). The patient was treated with FOLFIRI for 9 cycles and underwent two irinote-can dose reductions according to pharmacokinetic data regarding exposure to the active metabolite, SN-38. Simultaneous heterozygous UGT1A1*28 and UGT1A1*6 polymorphisms may produce higher exposure to SN-38 and a higher risk of adverse effects related to irinote-can. Additional studies will be necessary to determine the optimal starting dose of irinotecan for patients with both UGT1A1*28 and UGT1A1*6 polymorphisms.展开更多
Objective 1-Bromo-3-chloro-5,5-dimethylhydantoin (BCDMH) is a solid oxidizing biocide for water disinfection.The objective of this study was to investigate the toxic effect of BCDMH on zebrafish.Methods The developm...Objective 1-Bromo-3-chloro-5,5-dimethylhydantoin (BCDMH) is a solid oxidizing biocide for water disinfection.The objective of this study was to investigate the toxic effect of BCDMH on zebrafish.Methods The developmental toxicity of BCDMH on zebrafish embryos and the dose-effect relationship was determined.The effect of BCDMH exposure on histopathology and tissue antioxidant activity of adult zebrafish were observed over time.Results Exposure to 4 mg/L BCDMH post-fertilization was sufficient to induce a number of developmental malformations,such as edema,axial malformations,and reductions in heart rate and hatching rate.The no observable effects concentration of BCDMH on zebrafish embryo was 0.5 mg/L.After 96 h exposure,the 50% lethal concentration (95% confidence interval (CI)) of BCDMH on zebrafish embryo was 8.10 mg/L (6.15-11.16 mg/L).The 50% inhibitory concentration (95% CI) of BCDMH on hatching rate was 7.37 mg/L (6.33-8.35 mg/L).Histopathology showed two types of responses induced by BCDMH,defensive and compensatory.The extreme responses were marked hyperplasia of the gill epithelium with lamellar fusion and epidermal peeling.The histopathologic changes in the gills after 10 days exposure were accompanied by significantly higher catalase activity and lipid peroxidation.Conclusion These results have important implications for studies on the toxicity and use of BCDMH and its analogs.展开更多
[Objectives]The antifungal protein HAS1 newly obtained was evaluated for acute toxicity safety in KM mice according to relevant national regulations,so as to eliminate people s concerns about the safety of transgenic ...[Objectives]The antifungal protein HAS1 newly obtained was evaluated for acute toxicity safety in KM mice according to relevant national regulations,so as to eliminate people s concerns about the safety of transgenic plants.[Methods]The acute toxicity of the purified protein HAS1 was observed by intragastric administration of mice,and the poisoning symptoms,poisoning degree,recovery and death were observed.[Results]No abnormal toxicity symptoms were observed in the test group,the vehicle control group and the blank control group.The main tissues and organs were not abnormal in gross anatomy.The average body weight of each group showed an increasing trend compared with before administration at 1,3,7,11 and 14 d after administration.It was found that after giving the purified protein HAS1 to KM mice at a cumulative dose of 64 mg/kg a day,no obvious toxicity was observed in the acute toxicity test,indicating that the test substance was non-toxic by oral administration.[Conclusions]This study provides a basis for further use of the protein and its coding genes.展开更多
In order to define the mortality criteria of planarian objectively,a case study of Dugesia japonica exposed to 1-octyl-3-methylimidazolium bromide([C8mim]Br)was performed followed by a recovery culture.The results sho...In order to define the mortality criteria of planarian objectively,a case study of Dugesia japonica exposed to 1-octyl-3-methylimidazolium bromide([C8mim]Br)was performed followed by a recovery culture.The results showed that defining planarian mortality in light of its body disintegration was appropriate.If the disintegrated tissue of a planarian was more than 1/4 of its body length,it would completely degenerate.However,a planarian would regenerate the lost tissue and return to normal after a few days’recovery culture if the disintegrated part was less than 1/4 of body length.Therefore,we propose to use body disintegration as the endpoint of planarian mortality,i.e.,1/4 body length degenerated is the critical threshold of mortality and survival of planarians when exposed to toxicants.This criterion could be adapted in the standardization of testing protocols and comparability of acute toxicity test or other toxicological research using planarian as the test animal.展开更多
Neurons are the most extensive and polarized cells that display a unique single long axon and multiple dendrites, which are compartments exhibiting structural and functional differences. Polarity occurs early in neuro...Neurons are the most extensive and polarized cells that display a unique single long axon and multiple dendrites, which are compartments exhibiting structural and functional differences. Polarity occurs early in neuronal development and it is maintained by complex subcellular mechanisms throughout cell life. A well-defined and controlled spatio-temporal program of cellular and molecular events strictly regulates the formation of the axon and dendrites from a non-polarized cell. This event is critical for an adequate neuronal wiring and therefore for the normal functioning of the nervous system. Neuronal polarity is very sensitive to the harmful effects of different factors present in the environment. In this regard, rotenone is a crystalline, colorless and odorless isoflavone used as insecticide, piscicide and broad spectrum pesticide commonly used earlier in agriculture. In the present review we will summarize the toxicity mechanism caused by this pesticide in different neuronal cell types, focusing on a particular biological mechanism whereby rotenone could impair neuronal polarization in cultured hippocampal neurons. Recent advances suggest that the inhibition of axonogenesis produced by rotenone could be related with its effect on microtubule dynamics, the actin cytoskeleton and their regulatory pathways, particularly affecting the small RhoGTPase RhoA. Unveiling the mechanism by which rotenone produces neurotoxicity will be instrumental to understand the cellular mechanisms involved in neurodegenerative diseases influenced by this environmental pollutant, which may lead to research focused on the design of new therapeutic strategies.展开更多
The acute and chronic toxic effects of bifenthrin on Daphnia magna were studied. The results showed that 24 h-EC 50 , 48 h-LC 50 and 96 h-LC 50 of bifenthrin on D. magna were 3.24, 12.40 and 1.40 μg/L r...The acute and chronic toxic effects of bifenthrin on Daphnia magna were studied. The results showed that 24 h-EC 50 , 48 h-LC 50 and 96 h-LC 50 of bifenthrin on D. magna were 3.24, 12.40 and 1.40 μg/L respectively. And the LOEC and NOEC of bifenthrin were 0.02 and 0.004 μg/L respectively. The recovery test of bifenthrin on Daphnia magna was presented. Daphnia magna(F 0 generation) were exposed during 21 d to different bifenthrin concentrations. Offspring(animals from the first and third brood: F 1(1st) and F 1(3rd), respectively) were transferred to a free pesticide medium during a 21 d recovery period. In this recovery study, survival, growth, reproduction(mean total young per female, onset of reproduction and number broods per female) and the intrinsic rate of natural increase (r) were assessed as parameters. Reproduction such as number of young per female as well as length was still reduced in F 1(1st) generation daphnids from parentals(F 0) exposed to the bifenthrin. However F 1(3rd) individuals from parentals exposed to pesticide concentrations were able to restore reproduction when a recovery period of 21 d was allowed, but the length of F 1(3rd) from parentals exposed to the 0.5 and 0.75 μg/L bifenthrin concentration was still significantly effected(P<0.05).展开更多
Objective:To ensure the safety and evaluate the anti oxidant activity of Terminalia paniculata(T.paniculata)ethanolic extract in Sprague Dawley rats.Methods:The solvent extracts(hexane,ethyl acetate and ethanol)of T.p...Objective:To ensure the safety and evaluate the anti oxidant activity of Terminalia paniculata(T.paniculata)ethanolic extract in Sprague Dawley rats.Methods:The solvent extracts(hexane,ethyl acetate and ethanol)of T.paniculata were subjected to phytochemical analysis and their DPPH radical scavenging activity was assayed.The oral acute toxicity was evaluated using ethanolic extract of T.paniculata.Results:Ethyl acetate and elhanolic extracts showed more phytochemicals,whereas highest DPPH scavenging activity was found in ethanolic extract.In an acute toxicity study,T.paniculata ethanolic extract was orally administered(1000 mg/kg body weight)to rats and observed for72 h for any toxic symptoms and the dose was continued up to 14 d.On the 15th day rats were sacrificed and blood samples were collected from control and test animals and analyzed for some biochemical parameters.We did not observe any behavioral changes in test groups in comparison with their controls.Also,there were no significant alterations in biochemical,hematological(hemoglobin content and blood cells count)and liver function parameters such as serum glutamate pyruvate transaminase,serum glutamate oxaloacetate transaminase,alkaline phosphatase,total proteins,albumin and bilirubin levels between T.paniculata ethanolic extract treated and normal control groups.Conclusions:Together our results demonstrated that T.paniculala ethanolic possessed potent antioxidant activity and it was safer and non toxic to rats even at higher doses and therefore could be well considered for further investigation for its medicinal and therapeutic efficacy.展开更多
AIM: To evaluate the protective effect of 2′-p-hydroxy benzoylmussaenosidic acid [negundoside (NG), against carbon tetrachloride (CCl4)-induced toxicity in HUH-7 cel Is.METHODS: CCI4 is a well characterized hep...AIM: To evaluate the protective effect of 2′-p-hydroxy benzoylmussaenosidic acid [negundoside (NG), against carbon tetrachloride (CCl4)-induced toxicity in HUH-7 cel Is.METHODS: CCI4 is a well characterized hepatotoxin, and inducer of cytochrome P450 2E1 (CYP2E1)-mediated oxidative stress. In addition, lipid peroxidation and accumulation of intracellular calcium are important steps in the pathway involved in CCl4 toxicity. Liver cells (HUH-7) were treated with CCI4, and the mechanism of the cytoprotective effect of NG was assessed. Silymarin, a known hepatoprotective drug, was used as control. RESULTS: NG protected HUH-7 cells against CCl4 toxicity and loss of viability without modulating CYP2E1 activity. Prevention of CCl4 toxicity was associated with a reduction in oxidative damage as reflected by decreased generation of reactive oxygen species (ROS), a decrease in lipid peroxidation and accumulation of intracellular Ca^2+ levels and maintenance of intracellular glutathione homeostasis. Decreased mitochondrial membrane potential (MMP), induction of caspases mediated DNA fragmentation and cell cycle arrest, as a result of CCl4 treatment, were also blocked by NG. The protection afforded by NG seemed to be mediated by activation of cyclic adenosine monophosphate (cAMP) synthesis and inhibition of phospholipases (cPLA2). CONCLUSION: NG exerts a protective effect on CYP2E1-dependent CCl4 toxicity via inhibition of lipid peroxidation, followed by an improved intracellular calcium homeostasis and inhibition of Ca^2+-dependent proteases.展开更多
Toxicities (-1gEC50) of 16 phenolic compounds against Q67 were determined, and structural parameters as well as thermodynamic parameters of these compounds were obtained through fully optimized calculations by using...Toxicities (-1gEC50) of 16 phenolic compounds against Q67 were determined, and structural parameters as well as thermodynamic parameters of these compounds were obtained through fully optimized calculations by using B3LYP method of density functional theory (DFT) at the 6-311G^** level. Moreover, a 3-parameter (molecular average polarizability (α), heat energy corrected value (Eth) and the most positive hydrogen atomic charge (qH^+)) correlation model with R^2 = 0.981 and q^2 = 0.967 to predict -1gEC50 was obtained from experimental data based on the above-mentioned parameters as theoretical descriptors. Therein a was the most significant on -1gEC50. Variance Inflation Factors (VIF), t-value and cross-validation were applied to verify the model, confirming that the resultant model has fairly better stability and predictive ability to predict -1gEC50 of similar compounds.展开更多
Amyloid-beta(Aβ)-related alterations,similar to those found in the brains of patients with Alzheimer's disease,have been observed in the retina of patients with glaucoma.Decreased levels of brain-derived neurotro...Amyloid-beta(Aβ)-related alterations,similar to those found in the brains of patients with Alzheimer's disease,have been observed in the retina of patients with glaucoma.Decreased levels of brain-derived neurotrophic factor(BDNF)are believed to be associated with the neurotoxic effects of Aβpeptide.To investigate the mechanism underlying the neuroprotective effects of BDNF on Aβ_(1-40)-induced retinal injury in Sprague-Dawley rats,we treated rats by intravitreal administration of phosphate-buffered saline(control),Aβ_(1-40)(5 nM),or Aβ_(1-40)(5 nM)combined with BDNF(1μg/mL).We found that intravitreal administration of Aβ_(1-40)induced retinal ganglion cell apoptosis.Fluoro-Gold staining showed a significantly lower number of retinal ganglion cells in the Aβ_(1-40)group than in the control and BDNF groups.In the Aβ_(1-40)group,low number of RGCs was associated with increased caspase-3 expression and reduced TrkB and ERK1/2 expression.BDNF abolished Aβ_(1-40)-induced increase in the expression of caspase-3 at the gene and protein levels in the retina and upregulated TrkB and ERK1/2 expression.These findings suggest that treatment with BDNF prevents RGC apoptosis induced by Aβ_(1-40)by activating the BDNF-TrkB signaling pathway in rats.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.:82025007,81930020,and 82170874)China Postdoctoral Science Foundation(Grant No.:2022M710099).
文摘Excessive N-acetyl-p-benzoquinone imine(NAPQI)formation is a starting event that triggers oxidative stress and subsequent hepatocyte necrosis in acetaminophen(APAP)overdose caused acute liver failure(ALF).S-glutathionylation is a reversible redox post-translational modification and a prospective mechanism of APAP hepatotoxicity.Glutaredoxin-1(Glrx1),a glutathione-specific thioltransferase,is a primary enzyme to catalyze deglutathionylation.The objective of this study was to explored whether and how Glrx1 is associated with the development of ALF induced by APAP.The Glrx1 knockout mice(Glrx1^(-/-))and liver-specific overexpression of Glrx1(AAV8-Glrx1)mice were produced and underwent APAPinduced ALF.Pirfenidone(PFD),a potential inducer of Glrx1,was administrated preceding APAP to assess its protective effects.Our results revealed that the hepatic total protein S-glutathionylation(PSSG)increased and the Glrx1 level reduced in mice after APAP toxicity.Glrx1^(-/-)mice were more sensitive to APAP overdose,with higher oxidative stress and more toxic metabolites of APAP.This was attributed to Glrx1 deficiency increasing the total hepatic PSSG and the S-glutathionylation of cytochrome p4503a11(Cyp3a11),which likely increased the activity of Cyp3a11.Conversely,AAV8-Glrx1 mice were defended against liver damage caused by APAP overdose by inhibiting the S-glutathionylation and activity of Cyp3a11,which reduced the toxic metabolites of APAP and oxidative stress.PFD precede administration upregulated Glrx1 expression and alleviated APAP-induced ALF by decreasing oxidative stress.We have identified the function of Glrx1 mediated PSSG in liver injury caused by APAP overdose.Increasing Glrx1 expression may be investigated for the medical treatment of APAP-caused hepatic injury.
基金supported by the grants from Indian Council of Agricultural Research (Grant No. C30033/415101-036)Department of Biotechnology,Government of India (Grant No. BT/566/NE/U-excel/2016/72)+1 种基金supported by Rajiv Gandhi National FellowshipNational Fellowship for Higher Education of ST Students (Grant No. 201516-NFST-2015-17-ST-3514), respectively, from the Ministry of Tribal Affairs, University Grant Commission, Government of India。
文摘With the hypothesis that iron(Fe) deficiency responsive genes may play a role in Fe toxicity conditions,we studied five such genes OsNAS1,OsNAS3,OsIRO2,OsIRO3 and OsYSL16 across six contrasting rice genotypes for expression under high Fe and low phosphorus(P) conditions,and sequence polymorphism.Genotypes Sahbhagi Dhan,Chakhao Poirieton and Shasharang were high yielders with no bronzing symptom visible under Fe toxic field conditions,and BAM350 and BAM811 were low yielders but did not show bronzing symptoms.Hydroponic screening revealed that the number of crown roots and root length can be traits for consideration for identifying Fe toxicity tolerance in rice genotypes.Fe contents in rice roots and shoots of a high-yielding genotype KMR3 showing leaf bronzing were significantly high.In response to 24 h high Fe stress,the expression levels of OsNAS3 were up-regulated in all genotypes except KMR3.In response to 48 h high Fe stress,the expression levels of OsNAS1 were3-fold higher in tolerant Shasharang,whereas in KMR3,it was significantly down-regulated.Even in response to 7 d excess Fe stress,the transcript abundances of OsIRO2 and OsNAS3 were contrasting in genotypes Shasharang and KMR3.This suggested that the reported Fe deficiency genes had a role in Fe toxicity and that in genotype KMR3 under excess Fe stress,there was disruption of metal homeostasis.Under the 48 h low P conditions,OsIRO2 and OsYSL16 were significantly up-regulated in Fe tolerant genotype Shasharang and in low P tolerant genotype Chakhao Poirieton,respectively.In silico sequence analysis across 3 024 rice genotypes revealed polymorphism for 4 genes.Sequencing across OsIRO3and OsNAS3 revealed nucleotide polymorphism between tolerant and susceptible genotypes for Fe toxicity.Non-synonymous single nucleotide polymorphisms and insertion/deletions(InDels) differing in tolerant and susceptible genotypes were identified.A marker targeting 25-bp InDel in OsIRO3,when run on a diverse panel of 43 rice genotypes and a biparental population,was associated with superior performance for yield under acidic lowland field conditions.This study highlights the potential of one of the vital genes involved in Fe homeostasis as a genic target for improving rice yield in acidic soils.
文摘Ferroptosis is a type of programmed cell death dependent on iron.It is different from other forms of cell death such as apoptosis,classic necrosis and autophagy.Ferroptosis is involved in many neurodegenerative diseases.The role of ferroptosis in glutamate-induced neuronal toxicity is not fully understood.To test its toxicity,glutamate(1.25–20 mM)was applied to HT-22 cells for 12 to 48 hours.The optimal experimental conditions occurred at 12 hours after incubation with 5 mM glutamate.Cells were cultured with 3–12μM ferrostatin-1,an inhibitor of ferroptosis,for 12 hours before exposure to glutamate.The cell viability was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Autophagy was determined by monodansylcadaverine staining and apoptosis by caspase 3 activity.Damage to cell structures was observed under light and by transmission electron microscopy.The release of lactate dehydrogenase was detected by the commercial kit.Reactive oxygen species were measured by flow cytometry.Glutathione peroxidase activity,superoxide dismutase activity and malondialdehyde level were detected by the appropriate commercial kit.Prostaglandin peroxidase synthase 2 and glutathione peroxidase 4 gene expression was detected by real-time quantitative polymerase chain reaction.Glutathione peroxidase 4 and nuclear factor erythroid-derived-like 2 protein expression was detected by western blot analysis.Results showed that ferrostatin-1 can significantly counter the effects of glutamate on HT-22 cells,improving the survival rate,reducing the release of lactate dehydrogenase and reducing the damage to mitochondrial ultrastructure.However,it did not affect the caspase-3 expression and monodansylcadaverine-positive staining in glutamate-injured HT-22 cells.Ferrostatin-1 reduced the levels of reactive oxygen species and malondialdehyde and enhanced superoxide dismutase activity.It decreased gene expression of prostaglandin peroxidase synthase 2 and increased gene expression of glutathione peroxidase 4 and protein expressions of glutathione peroxidase 4 and nuclear factor(erythroid-derived)-like 2 in glutamate-injured HT-22 cells.Treatment of cultured cells with the apoptosis inhibitor Z-Val-Ala-Asp(OMe)-fluoromethyl ketone(2–8μM),autophagy inhibitor 3-methyladenine(100–400μM)or necrosis inhibitor necrostatin-1(10–40μM)had no effect on glutamate induced cell damage.However,the iron chelator deferoxamine mesylate salt inhibited glutamate induced cell death.Thus,the results suggested that ferroptosis is caused by glutamate-induced toxicity and that ferrostatin-1 protects HT-22 cells from glutamate-induced oxidative toxicity by inhibiting the oxidative stress.
文摘AIM: To investigate the correlation between uridine diphosphate glucuronosyl transferase 1A1 (UGT1A1) gene polymorphisms and irinotecan-associated side effects and parameters of drug efficacy in patients with metastatic colorectal cancer (mCRC) receiving a low-dose weekly irinotecan chemotherapeutic regimen. METHODS: Genotypes were retrospectively evaluated by gene scan analysis on the ABI 310 sequencer of the TATAA box in the promoter region of the UGT1A1 gene in blood samples from 105 patients who had received 1st line irinotecan-based chemotherapy for mCRC. RESULTS: The distribution of the genotypes was as follows: wild type genotype (WT) (6/6 ) 39.0%, heterozygous genotype (6/7) 49.5%, and homozygous genotype (7/7) 9.5%. The overall response rate (OR) was similar between patients carrying the (6/7, 7/7) or the WT genotype (6/6) (44.3% vs 43.2%, P = 0.75). Neither time to progression [(TTP) 8.1 vs 8.2 mo, P = 0.97] nor overall survival [(OS) 21.2 vs 18.9 mo, P = 0.73] differed significantly in patients who carried the(6/6) when compared to the (6/7, 7/7) genotype. No significant differences in toxicity were observed: Grade 3 and 4 delayed diarrhoea [(6/7, 7/7) vs (6/6); 13.0% vs 6.2%, P =0.08], treatment delays [(6/7, 7/7) vs (6/6); 25.1% vs 19.3%, P = 0.24] or dose reductions [(6/7, 7/7) vs (6/6); 21.5% vs 27.2%, P = 0.07].CONCLUSION: This analysis demonstrates the non-significant influence of the UGT1A1 gene polymorphism on efficacy and rate of irinotecan-associated toxicity in mCRC patients receiving low-dose irinotecan based chemotherapy.
基金Supported by National Natural Science Foundation Project,Grants No.30971579Capital Development Foundation,No.2007-2029
文摘Many studies have demonstrated the impact of UGT1A1 on toxicity of irinotecan. In particular, patients bear-ing UGT1A1*28 (TA 7/7) have a higher risk of severe neutropenia and diarrhea. Based on this, prescribers of irinotecan are advised that patients with UGT1A1*28 (TA 7/7) should start with a reduced dose of irinotecan, although a particular dose is not specified. Research in Asian countries has shown a lower incidence of UG-T1A1*28 (TA 7/7), while UGT1A1*6 (A/A) is more often found and is associated with severe irinotecan-related neutropenia. We report here a case of a metastatic colorectal cancer patient who is heterozygous for the UGT1A1*28 polymorphism (TA 6/7) as well as the UG-T1A1*6 polymorphism (G/A). The patient was treated with FOLFIRI for 9 cycles and underwent two irinote-can dose reductions according to pharmacokinetic data regarding exposure to the active metabolite, SN-38. Simultaneous heterozygous UGT1A1*28 and UGT1A1*6 polymorphisms may produce higher exposure to SN-38 and a higher risk of adverse effects related to irinote-can. Additional studies will be necessary to determine the optimal starting dose of irinotecan for patients with both UGT1A1*28 and UGT1A1*6 polymorphisms.
基金supported by the National Science and Technology Major Project "Creation of Major New Drugs", 2008ZX09305-001
文摘Objective 1-Bromo-3-chloro-5,5-dimethylhydantoin (BCDMH) is a solid oxidizing biocide for water disinfection.The objective of this study was to investigate the toxic effect of BCDMH on zebrafish.Methods The developmental toxicity of BCDMH on zebrafish embryos and the dose-effect relationship was determined.The effect of BCDMH exposure on histopathology and tissue antioxidant activity of adult zebrafish were observed over time.Results Exposure to 4 mg/L BCDMH post-fertilization was sufficient to induce a number of developmental malformations,such as edema,axial malformations,and reductions in heart rate and hatching rate.The no observable effects concentration of BCDMH on zebrafish embryo was 0.5 mg/L.After 96 h exposure,the 50% lethal concentration (95% confidence interval (CI)) of BCDMH on zebrafish embryo was 8.10 mg/L (6.15-11.16 mg/L).The 50% inhibitory concentration (95% CI) of BCDMH on hatching rate was 7.37 mg/L (6.33-8.35 mg/L).Histopathology showed two types of responses induced by BCDMH,defensive and compensatory.The extreme responses were marked hyperplasia of the gill epithelium with lamellar fusion and epidermal peeling.The histopathologic changes in the gills after 10 days exposure were accompanied by significantly higher catalase activity and lipid peroxidation.Conclusion These results have important implications for studies on the toxicity and use of BCDMH and its analogs.
基金Supported by National Natural Science Foundation(31471555)National Key Research and Development Project(SQ2018YFD020024)
文摘[Objectives]The antifungal protein HAS1 newly obtained was evaluated for acute toxicity safety in KM mice according to relevant national regulations,so as to eliminate people s concerns about the safety of transgenic plants.[Methods]The acute toxicity of the purified protein HAS1 was observed by intragastric administration of mice,and the poisoning symptoms,poisoning degree,recovery and death were observed.[Results]No abnormal toxicity symptoms were observed in the test group,the vehicle control group and the blank control group.The main tissues and organs were not abnormal in gross anatomy.The average body weight of each group showed an increasing trend compared with before administration at 1,3,7,11 and 14 d after administration.It was found that after giving the purified protein HAS1 to KM mice at a cumulative dose of 64 mg/kg a day,no obvious toxicity was observed in the acute toxicity test,indicating that the test substance was non-toxic by oral administration.[Conclusions]This study provides a basis for further use of the protein and its coding genes.
基金supported by the National Natural Science Foundation of China(31471965)the Natural Science Foundation of Henan P rovince(142300410457)the National Student Innovation Training P roject of Henan Normal University(201410476051)
文摘In order to define the mortality criteria of planarian objectively,a case study of Dugesia japonica exposed to 1-octyl-3-methylimidazolium bromide([C8mim]Br)was performed followed by a recovery culture.The results showed that defining planarian mortality in light of its body disintegration was appropriate.If the disintegrated tissue of a planarian was more than 1/4 of its body length,it would completely degenerate.However,a planarian would regenerate the lost tissue and return to normal after a few days’recovery culture if the disintegrated part was less than 1/4 of body length.Therefore,we propose to use body disintegration as the endpoint of planarian mortality,i.e.,1/4 body length degenerated is the critical threshold of mortality and survival of planarians when exposed to toxicants.This criterion could be adapted in the standardization of testing protocols and comparability of acute toxicity test or other toxicological research using planarian as the test animal.
文摘Neurons are the most extensive and polarized cells that display a unique single long axon and multiple dendrites, which are compartments exhibiting structural and functional differences. Polarity occurs early in neuronal development and it is maintained by complex subcellular mechanisms throughout cell life. A well-defined and controlled spatio-temporal program of cellular and molecular events strictly regulates the formation of the axon and dendrites from a non-polarized cell. This event is critical for an adequate neuronal wiring and therefore for the normal functioning of the nervous system. Neuronal polarity is very sensitive to the harmful effects of different factors present in the environment. In this regard, rotenone is a crystalline, colorless and odorless isoflavone used as insecticide, piscicide and broad spectrum pesticide commonly used earlier in agriculture. In the present review we will summarize the toxicity mechanism caused by this pesticide in different neuronal cell types, focusing on a particular biological mechanism whereby rotenone could impair neuronal polarization in cultured hippocampal neurons. Recent advances suggest that the inhibition of axonogenesis produced by rotenone could be related with its effect on microtubule dynamics, the actin cytoskeleton and their regulatory pathways, particularly affecting the small RhoGTPase RhoA. Unveiling the mechanism by which rotenone produces neurotoxicity will be instrumental to understand the cellular mechanisms involved in neurodegenerative diseases influenced by this environmental pollutant, which may lead to research focused on the design of new therapeutic strategies.
文摘The acute and chronic toxic effects of bifenthrin on Daphnia magna were studied. The results showed that 24 h-EC 50 , 48 h-LC 50 and 96 h-LC 50 of bifenthrin on D. magna were 3.24, 12.40 and 1.40 μg/L respectively. And the LOEC and NOEC of bifenthrin were 0.02 and 0.004 μg/L respectively. The recovery test of bifenthrin on Daphnia magna was presented. Daphnia magna(F 0 generation) were exposed during 21 d to different bifenthrin concentrations. Offspring(animals from the first and third brood: F 1(1st) and F 1(3rd), respectively) were transferred to a free pesticide medium during a 21 d recovery period. In this recovery study, survival, growth, reproduction(mean total young per female, onset of reproduction and number broods per female) and the intrinsic rate of natural increase (r) were assessed as parameters. Reproduction such as number of young per female as well as length was still reduced in F 1(1st) generation daphnids from parentals(F 0) exposed to the bifenthrin. However F 1(3rd) individuals from parentals exposed to pesticide concentrations were able to restore reproduction when a recovery period of 21 d was allowed, but the length of F 1(3rd) from parentals exposed to the 0.5 and 0.75 μg/L bifenthrin concentration was still significantly effected(P<0.05).
基金Supported by University Grants Commission(F.No.42-666/2013)Council of Scientific and Industrial Research(09/152(292)/2013,EMR-Ⅰ),New Delhi,India
文摘Objective:To ensure the safety and evaluate the anti oxidant activity of Terminalia paniculata(T.paniculata)ethanolic extract in Sprague Dawley rats.Methods:The solvent extracts(hexane,ethyl acetate and ethanol)of T.paniculata were subjected to phytochemical analysis and their DPPH radical scavenging activity was assayed.The oral acute toxicity was evaluated using ethanolic extract of T.paniculata.Results:Ethyl acetate and elhanolic extracts showed more phytochemicals,whereas highest DPPH scavenging activity was found in ethanolic extract.In an acute toxicity study,T.paniculata ethanolic extract was orally administered(1000 mg/kg body weight)to rats and observed for72 h for any toxic symptoms and the dose was continued up to 14 d.On the 15th day rats were sacrificed and blood samples were collected from control and test animals and analyzed for some biochemical parameters.We did not observe any behavioral changes in test groups in comparison with their controls.Also,there were no significant alterations in biochemical,hematological(hemoglobin content and blood cells count)and liver function parameters such as serum glutamate pyruvate transaminase,serum glutamate oxaloacetate transaminase,alkaline phosphatase,total proteins,albumin and bilirubin levels between T.paniculata ethanolic extract treated and normal control groups.Conclusions:Together our results demonstrated that T.paniculala ethanolic possessed potent antioxidant activity and it was safer and non toxic to rats even at higher doses and therefore could be well considered for further investigation for its medicinal and therapeutic efficacy.
基金Indian Institute of Integrative Medicine, Council of Scientific and Industrial Research
文摘AIM: To evaluate the protective effect of 2′-p-hydroxy benzoylmussaenosidic acid [negundoside (NG), against carbon tetrachloride (CCl4)-induced toxicity in HUH-7 cel Is.METHODS: CCI4 is a well characterized hepatotoxin, and inducer of cytochrome P450 2E1 (CYP2E1)-mediated oxidative stress. In addition, lipid peroxidation and accumulation of intracellular calcium are important steps in the pathway involved in CCl4 toxicity. Liver cells (HUH-7) were treated with CCI4, and the mechanism of the cytoprotective effect of NG was assessed. Silymarin, a known hepatoprotective drug, was used as control. RESULTS: NG protected HUH-7 cells against CCl4 toxicity and loss of viability without modulating CYP2E1 activity. Prevention of CCl4 toxicity was associated with a reduction in oxidative damage as reflected by decreased generation of reactive oxygen species (ROS), a decrease in lipid peroxidation and accumulation of intracellular Ca^2+ levels and maintenance of intracellular glutathione homeostasis. Decreased mitochondrial membrane potential (MMP), induction of caspases mediated DNA fragmentation and cell cycle arrest, as a result of CCl4 treatment, were also blocked by NG. The protection afforded by NG seemed to be mediated by activation of cyclic adenosine monophosphate (cAMP) synthesis and inhibition of phospholipases (cPLA2). CONCLUSION: NG exerts a protective effect on CYP2E1-dependent CCl4 toxicity via inhibition of lipid peroxidation, followed by an improved intracellular calcium homeostasis and inhibition of Ca^2+-dependent proteases.
基金supported by the Natural Science Foundation of Zhejiang Province (No. 2008Y507280)
文摘Toxicities (-1gEC50) of 16 phenolic compounds against Q67 were determined, and structural parameters as well as thermodynamic parameters of these compounds were obtained through fully optimized calculations by using B3LYP method of density functional theory (DFT) at the 6-311G^** level. Moreover, a 3-parameter (molecular average polarizability (α), heat energy corrected value (Eth) and the most positive hydrogen atomic charge (qH^+)) correlation model with R^2 = 0.981 and q^2 = 0.967 to predict -1gEC50 was obtained from experimental data based on the above-mentioned parameters as theoretical descriptors. Therein a was the most significant on -1gEC50. Variance Inflation Factors (VIF), t-value and cross-validation were applied to verify the model, confirming that the resultant model has fairly better stability and predictive ability to predict -1gEC50 of similar compounds.
基金supported by the Ministry of Higher Education,Government of Malaysia,No.FRGS/2/2014/SG03/UITM/02/2 UiTM IRMI file No.600-RMI/FRGS 5/3(111/2014),toⅡYayasan Penyelidikan Otak,Minda dan Neurosains Malaysia(YPOMNM),No.YPOMNM/2019-04(2)UiTM IRMI No.100-IRMI/PRI 16/6/2(010/2019),to MAML。
文摘Amyloid-beta(Aβ)-related alterations,similar to those found in the brains of patients with Alzheimer's disease,have been observed in the retina of patients with glaucoma.Decreased levels of brain-derived neurotrophic factor(BDNF)are believed to be associated with the neurotoxic effects of Aβpeptide.To investigate the mechanism underlying the neuroprotective effects of BDNF on Aβ_(1-40)-induced retinal injury in Sprague-Dawley rats,we treated rats by intravitreal administration of phosphate-buffered saline(control),Aβ_(1-40)(5 nM),or Aβ_(1-40)(5 nM)combined with BDNF(1μg/mL).We found that intravitreal administration of Aβ_(1-40)induced retinal ganglion cell apoptosis.Fluoro-Gold staining showed a significantly lower number of retinal ganglion cells in the Aβ_(1-40)group than in the control and BDNF groups.In the Aβ_(1-40)group,low number of RGCs was associated with increased caspase-3 expression and reduced TrkB and ERK1/2 expression.BDNF abolished Aβ_(1-40)-induced increase in the expression of caspase-3 at the gene and protein levels in the retina and upregulated TrkB and ERK1/2 expression.These findings suggest that treatment with BDNF prevents RGC apoptosis induced by Aβ_(1-40)by activating the BDNF-TrkB signaling pathway in rats.