Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thi...Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal(SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures.展开更多
Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe seve...Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe severely affects its pressure-holding capacity,hence the early detection of internal cracks is crucial for effective pipeline maintenance strategies.This study extends the scope of guided wave-based ultrasonic testing to detect the growth of internal cracks in a natural gas distribution PE pipe.Laboratory experiments and a finite element model were planned to study the wave-crack interaction at different stages of axially oriented internal crack growth with a piezoceramic transducer-based setup arranged in a pitch-catch configuration.Mode dispersion analysis supplemented with preliminary experiments was performed to isolate the optimal inspection frequency,leading to the selection of the T(0,1)mode at 50-kHz for the investigation.A transmission index based on the energy of the T(0,1)mode was developed to trace the extent of simulated crack growth.The findings revealed an inverse linear correlation between the transmission index and the crack depth for crack growth beyond 20%crack depth.展开更多
The noncollinear interaction of guided optical waves with magnetostatic waves under inclined bias magnetic field is theoretically studied in detail. Similar approach can also be applied to the collinear interaction. C...The noncollinear interaction of guided optical waves with magnetostatic waves under inclined bias magnetic field is theoretically studied in detail. Similar approach can also be applied to the collinear interaction. Calculation results indicate that the diffraction efficiency (DE) in magnitude is equal to the mode-conversion efficiency (MCE) under vertical bias magnetic field, but they differ greatly under inclined bias magnetic field. By comparison to the case of vertical magnetization, the DE or the MCE can be greatly increased under inclined magnetic field. The characteristic of the DE curves obtained is basically in agreement with the experimental result.展开更多
We investigate the interface-guided mode of Lamb waves in a phononic crystal heterostructures plate, which is com- posed of two different semi-infinite phononic crystal (PC) plates. The interface-guided modes of the...We investigate the interface-guided mode of Lamb waves in a phononic crystal heterostructures plate, which is com- posed of two different semi-infinite phononic crystal (PC) plates. The interface-guided modes of the Lamb wave can be obtained by the lateral lattice slipping or by the interface longitudinal gliding. Significantly, it is observed that the condition to generate the interface-guided modes of the Lamb wave is more demanding than that of the studied fluid-fluid system. The interface-guided modes are strongly affected not only by the relative movement of the two semi-infinite PCs but also by the thickness of the PC plate.展开更多
Ultrasonic guided wave have the multi-modes and dispersive characteristics, and its modes are easy to be converted at boundary or when running into defects in pipes, which makes the discrimination of different guided ...Ultrasonic guided wave have the multi-modes and dispersive characteristics, and its modes are easy to be converted at boundary or when running into defects in pipes, which makes the discrimination of different guided waves modes of the reflection signals in pipes NDT very hard. In this work, firstly, the experiments are carried out to test two kinds of stainless steel pipes by applying guided waves NDT, one is integrated pipe and another is non-integrated pipe with a small hole defect, and the detected guided waves echo signals are respectively obtained. Secondly, the measured signals are processed by matching pursuit method and the Chirplet matching atom parameters are calculated. By calculating the time-frequency distributions spectrum of detected guided waves echo signals, torsional, flexural and longitudinal guided waves modes are identified from the intact pipe, and the two wave-packets with torsional and flexural guided waves modes are also identified from the pipe with hole defect. The results showed that the matching pursuit method has a tremendous advantage to identify different guided waves modes in pipes nondestructive testing.展开更多
Using periodic permanent magnet(PPM)electromagnetic acoustic transducers(EMATs),different shear horizontal(SH)guided wave modes can form simultaneously in some situations,which can interfere with the inspection.The ma...Using periodic permanent magnet(PPM)electromagnetic acoustic transducers(EMATs),different shear horizontal(SH)guided wave modes can form simultaneously in some situations,which can interfere with the inspection.The main cause of this phenomenon(typically named multiple modes)is related to the frequency bandwidth of excitation signals and the transducer spatial bandwidth.Simply narrowing the frequency bandwidth cannot effectively limit the number of different SH modes.Previous researches showed that unnecessary SH wave modes can be eliminated by using dual EMATs.However,in practical applications,it is more convenient to change the excitation frequency than to use dual EMATs.In this paper,the stress boundary conditions of the PPM-EMAT are analyzed,the analytical expression of SH guided wave is established,and the magnitude of SH guided wave mode under continuous tone and tone-burst input is obtained.A method to generate a single SH mode by re-selecting an operating point is proposed.Furthermore,the influence of the frequency bandwidth of the tone-burst signal is analyzed.Finally,a single SH mode excitation is achieved with tone-burst input.展开更多
Probability-based diagnostic imaging(PDI)is one of the most well-known damage identification methods using guided waves.It is usually applied to diagnose damage in plates.The previous studies were dependent on the cer...Probability-based diagnostic imaging(PDI)is one of the most well-known damage identification methods using guided waves.It is usually applied to diagnose damage in plates.The previous studies were dependent on the certain damage index(DI)which is always calculated from the guided wave signals.In conventional methods,DI is simply defined by comparing the real-time data with the baseline data as reference.However,the baseline signal is easily affected by varying environmental conditions of structures.In this paper,a reference-free diagnostic imaging method is developed to avoid the influence of environmental factors,such as temperature and load conditions.The DI is defined based on the mode conversion of multi-mode guided waves with realtime signals without baseline signals.To improve the accuracy of diagnosis,two terms are included in the reference-free DI.One is called energy DI,which is defined based on the feature of signal energy.The other is called correlation DI and is defined based on the correlation coefficient.Then the PDI algorithm can be carried out instantaneously according to the reference-free DI.The real-time signals which are used to calculate DI are collected by the piezoelectric lead zirconate titanate(PZT)transducers placed on both sides of a plate.The numerical simulations by the finite element(FE)method on aluminum plates with PZT arrays are performed to validate the effectiveness of the reference-free damage diagnostic imaging.The approach is validated by two different arrays:a circle network and a square network.The results of diagnostic imaging are demonstrated and discussed in this paper.Furthermore,the advantage of reference-free DI is investigated by comparing the accuracy of defined reference-free DI and energy DI.展开更多
Ultrasonic guided wave inspection is an effective non-destructive testing method which can be used for stress level evaluation in steel strands.Unfortunately the propagation velocity of ultrasonic guided waves changes...Ultrasonic guided wave inspection is an effective non-destructive testing method which can be used for stress level evaluation in steel strands.Unfortunately the propagation velocity of ultrasonic guided waves changes due to temperature shift making the prestress measurement of steel strands inaccurate and even sometimes impossible.In the course of solving the problem,this paper reports on quantitative research on the temperature dependence of ultrasonic longitudinal guided wave propagation in long range steel strands.In order to achieve the generation and reception of a chosen longitudinal mode in a steel strand with a helical shaped surface,a new type of magnetostrictive transducer was developed,characterized by a group of thin clips and three identical permanent magnets.Excitation and reception of ultrasonic guided waves in a steel strand were performed experimentally.Experimental results shows that in the temperature range from-4 ℃ to 34 ℃,the propagation velocity of the L(0,1) mode at 160 kHz linearly decreased with increasing temperature and its temperature dependent coefficient was 0.90(m·s-1 ·(℃)-1) which is very close to the theoretical prediction.The effect of dimension deviation between the helical and center wires and the effect of the thermal expansion of the steel strand on ultrasonic longitudinal guided wave propagation were also analyzed.It was found that these effects could be ignored compared with the change in the material mechanical properties of the steel strands due to temperature shift.It was also observed that the longitudinal guided wave mode was somewhat more sensitive to temperature changes compared with conventional ultrasonic waves theoretically.Therefore,it is considered that the temperature effect on ultrasonic longitudinal guided wave propagation in order to improve the accuracy of stress measurement in prestressed steel strands.Quantitative research on the temperature dependence of ultrasonic guided wave propagation in steel strands provides an important basis for the compensation of temperature effects in stress measurement in steel strands by using ultrasonic guided wave inspection.展开更多
A model of guided circumferential waves propagating in double-walled carbon nanotubes is built by the theory of wave propagation in continuum mechanics, while the van der Waals force between the inner and outer nanotu...A model of guided circumferential waves propagating in double-walled carbon nanotubes is built by the theory of wave propagation in continuum mechanics, while the van der Waals force between the inner and outer nanotube has been taken into account in the model. The dispersion curves of the guided circumferential wave propagation are studied, and some dispersion characteristics are illustrated by comparing with those of single-walled carbon nanotubes. It is found that in double-walled carbon nanotubes, the guided circumferential waves will propagate in more dispersive ways. More interactions between neighboring wave modes may take place. In particular, it has been found that a couple of wave modes may disappear at a certain frequency and that, while a couple of wave modes disappear, another new couple of wave modes are excited at the same wave number.展开更多
The effect of second-harmonic generation (SHG) by primary (fundamental) circumferential guided wave (CGW) propagation is investigated from a numerical standpoint. To enable that the second harmonic of the primar...The effect of second-harmonic generation (SHG) by primary (fundamental) circumferential guided wave (CGW) propagation is investigated from a numerical standpoint. To enable that the second harmonic of the primary CGW mode can accumulate along the circumferential direction, an appropriate mode pair of primary and double frequency CGWs is chosen. Finite element simulations and evaluations of nonlinear CGW propagation are analyzed for the selected CGW mode pair. The numerical simulations performed directly demonstrate that the response of SHG is completely generated by the desired primary CGW mode that satisfies the condition of phase velocity matching at a specific driving frequency, and that the second harmonic of the primary CGW mode does have a cumulative effect with circumferential angles. The numerical perspective obtained yields an insight into the complicated physical process of SHG of primary CGW propagation unavailable previously.展开更多
Pipeline plays an indispensable role in process industries,because the progressing crack-like defects of in it may result in serious accidents and significant economic losses.Therefore,it is essential to detect the cr...Pipeline plays an indispensable role in process industries,because the progressing crack-like defects of in it may result in serious accidents and significant economic losses.Therefore,it is essential to detect the cracks occurred in pipelines.The axial crack-like defects in elbows with different angle are inspected by using the T(0,1)mode guided waves,in which different configurations including 45°,90°,135°and 180°(straight pipe)are considered respectively.Firstly,the detection sensitivity for different defect location is experimentally investigated.After that,finite element simulation is used to explore the propagation behaviors of T(0,1)mode in different bend structures.Simulation and experiment results show that the crack in different areas of the elbow can affect the detection sensitivity.It can be found that the detection sensitivity of crack in the middle area of the elbow is higher compared to the extrados and intrados of the elbow.Finally,the mode conversion is also investigated when the T(0,1)crosses the bend,and the results show that bend is a key factor to the mode conversion phenomenon which presents between the T(0,1)mode and F(1,2)mode.展开更多
A broad band polarization-independent reflector working in the telecommunication C+L band is proposed using the guided mode resonance effect of a periodic surface relief element deposited by a layer of silicon medium...A broad band polarization-independent reflector working in the telecommunication C+L band is proposed using the guided mode resonance effect of a periodic surface relief element deposited by a layer of silicon medium. It is shown that this structure can provide high reflection (R 〉 99.5%) and wide angular bandwidth (θ≈ 20°, R 〉 98%) for both TE and TM polarizations over a wide spectrum band 1.5 μm-l.6 μm. Furthermore, it is found by rigorous coupled wave analysis that the polarization-independent reflector proposed here is tolerant of a deviation of grating thickness, which makes it very easy to fabricate in experiments.展开更多
We investigate the three-dimensional (3D) scattering problem of an incident plane shear horizontal wave by a partly through-thickness hole in an isotropic plate, in which the Lamb wave modes are also included due to...We investigate the three-dimensional (3D) scattering problem of an incident plane shear horizontal wave by a partly through-thickness hole in an isotropic plate, in which the Lamb wave modes are also included due to the mode conversions by the scattering obstacle in the 3D problem. An analytical model is presented such that the wave fields are expanded in all of propagating and evanescent SH modes and Lamb modes, and the scattered far-fields of three fundamental guided wave modes are analyzed numerically for different sizes of the holes and frequencies. The numerical results are verified by comparing with those obtained by using the approximate Poisson/Mindlin plate model for small hole radius and low frequency. It is also found that the scattering patterns are different from those of the SO wave incidence. Our work is useful for quantitative evaluation of the plate-like structure by ultrasonic guided waves.展开更多
A broadband non-polarizing beam splitter (NPBS) operating in the telecommunication C+L band is designed by using the guided mode resonance effect of periodic silicon-on-insulator (SOI) elements. It is shown that ...A broadband non-polarizing beam splitter (NPBS) operating in the telecommunication C+L band is designed by using the guided mode resonance effect of periodic silicon-on-insulator (SOI) elements. It is shown that this double layer SOI structure can provide ~50/50 beam ratio with the maximum divergences between reflection and transmission being less than 8% over the spectrum of 1.4μm-l.7 μm and i% in the telecommunication band for both TE and TM polarizations. The physical basis of this broadband non-polarizing property is on the simultaneous excitation of the TE and TM strong modulation waveguide modes near the designed spectrum band. Meanwhile, the electric field distributions for both TE and TM polarizations verify the resonant origin of spectrum in the periodic SOI structure. Furthermore, it is demonstrated with our calculations that the beam splitter proposed here is tolerant to the deviations of incident angle and structure parameters, which make it very easy to be fabricated with current IC technology.展开更多
This paper investigates the guided-mode characteristics of hollow-core photonic band-gap fibre (HC-PBGF) with interstitial holes fabricated by an improved twice stack-and-draw technique at visible wavelengths. Based...This paper investigates the guided-mode characteristics of hollow-core photonic band-gap fibre (HC-PBGF) with interstitial holes fabricated by an improved twice stack-and-draw technique at visible wavelengths. Based on the simulation model with interstitial holes, the influence of glass interstitial apexes on photonic band-gaps is discussed. The existing forms of guided-mode in part band gaps are shown by using the full-vector plane-wave method. In the experiment, the observed transmission spectrum corresponds to the part band gaps obtained by simulation. The fundamental and second-order guided-modes with mixture of yellow and green light are observed through choosing appropriate fibre length and adjusting coupling device. The loss mechanism of guided-modes in HC-PBGF is also discussed.展开更多
A compact tunable guided-mode resonant filter (GMRF) in the telecommunication region near the 1550 nm wave-length is proposed in this paper. Particle swarm optimization (PSO) is used to design the GMRF. The tunabi...A compact tunable guided-mode resonant filter (GMRF) in the telecommunication region near the 1550 nm wave-length is proposed in this paper. Particle swarm optimization (PSO) is used to design the GMRF. The tunability of the GMRF is achieved by an MEMS-based physical movement (in the horizontal or vertical direction) combined with an incident angle in a certain range. The results show that the resonant wavelength tuning of 110 nm (140mm) is obtained by horizontal movement of 168 nm (vertical movement of 435 nm) combined with an about 11° variation of incident angle.展开更多
Based on attenuated total reflection (ATR) and thermo-optic effect, the polymeric thin film planar optical waveguide is used as the temperature sensor, and the factors influencing the sensitivity of the temperature ...Based on attenuated total reflection (ATR) and thermo-optic effect, the polymeric thin film planar optical waveguide is used as the temperature sensor, and the factors influencing the sensitivity of the temperature sensor are comprehensively analyzed. Combined with theoretical analysis and experimental investigation, the sensitivity of the temperature sensor is related to the thicknesses of the upper cladding layer, the waveguide layer, the optical loss of the polymer material and the guided wave modes. The results show that the slope value about reflectivity and temperature, which stands for the sensitivity of the polymer thin film temperature sensor, is associated with the waveguide film thickness and the guided wave modes, and the slope value is the highest in the zero reflectance of a certain transverse electric (TE) mode. To improve the sensitivity of the temperature sensor, the sensor's working incident light exterior angle α should be chosen under a certain TE mode with the reflectivity to be zero. This temperature sensor is characterized by high sensitivity and simple structure and it is easily fabricated.展开更多
With the full-vector plane-wave method (FVPWM) and the full-vector beam propagation method (FVBPM), the dependences of the band-gap and mode characteristics on material index and cladding structure parameter in an...With the full-vector plane-wave method (FVPWM) and the full-vector beam propagation method (FVBPM), the dependences of the band-gap and mode characteristics on material index and cladding structure parameter in anti- resonance guiding photonic crystal fibres (ARGPCFs) are sufficiently analysed. An ARGPCF operating in the near- infrared wavelength is shown. The influences of the high index cylinders, glass interstitial apexes and silica structure on the characteristics of band-gaps and modes are deeply investigated. The equivalent planar waveguide theory is used for analysing such an ARGPCF filled by the isotropic materials, and the resonance and the anti-resonance characteristics r:~n h~ w~|] r^r~dlrtpd展开更多
基金Project supported by the Natural Science Foundation of Jilin Province of China(Grant Nos.20240402081GH and 20220101012JC)the National Natural Science Foundation of China(Grant No.42074139)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLA202308)。
文摘Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal(SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures.
基金the financial support provided by USDOT Pipeline and Hazardous Materials Safety Administration (PHMSA)through the Competitive Academic Agreement Program (CAAP)。
文摘Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe severely affects its pressure-holding capacity,hence the early detection of internal cracks is crucial for effective pipeline maintenance strategies.This study extends the scope of guided wave-based ultrasonic testing to detect the growth of internal cracks in a natural gas distribution PE pipe.Laboratory experiments and a finite element model were planned to study the wave-crack interaction at different stages of axially oriented internal crack growth with a piezoceramic transducer-based setup arranged in a pitch-catch configuration.Mode dispersion analysis supplemented with preliminary experiments was performed to isolate the optimal inspection frequency,leading to the selection of the T(0,1)mode at 50-kHz for the investigation.A transmission index based on the energy of the T(0,1)mode was developed to trace the extent of simulated crack growth.The findings revealed an inverse linear correlation between the transmission index and the crack depth for crack growth beyond 20%crack depth.
文摘The noncollinear interaction of guided optical waves with magnetostatic waves under inclined bias magnetic field is theoretically studied in detail. Similar approach can also be applied to the collinear interaction. Calculation results indicate that the diffraction efficiency (DE) in magnitude is equal to the mode-conversion efficiency (MCE) under vertical bias magnetic field, but they differ greatly under inclined bias magnetic field. By comparison to the case of vertical magnetization, the DE or the MCE can be greatly increased under inclined magnetic field. The characteristic of the DE curves obtained is basically in agreement with the experimental result.
基金supported by the National Natural Science Foundation of China(Grant Nos.11374068 and 11374066)the Science&Technology Star of Zhujiang Foundation of Guangzhou,China(Grant No.2011J2200013)the Natural Science Foundation of Guangdong,China(Grant No.S2012020010885)
文摘We investigate the interface-guided mode of Lamb waves in a phononic crystal heterostructures plate, which is com- posed of two different semi-infinite phononic crystal (PC) plates. The interface-guided modes of the Lamb wave can be obtained by the lateral lattice slipping or by the interface longitudinal gliding. Significantly, it is observed that the condition to generate the interface-guided modes of the Lamb wave is more demanding than that of the studied fluid-fluid system. The interface-guided modes are strongly affected not only by the relative movement of the two semi-infinite PCs but also by the thickness of the PC plate.
文摘Ultrasonic guided wave have the multi-modes and dispersive characteristics, and its modes are easy to be converted at boundary or when running into defects in pipes, which makes the discrimination of different guided waves modes of the reflection signals in pipes NDT very hard. In this work, firstly, the experiments are carried out to test two kinds of stainless steel pipes by applying guided waves NDT, one is integrated pipe and another is non-integrated pipe with a small hole defect, and the detected guided waves echo signals are respectively obtained. Secondly, the measured signals are processed by matching pursuit method and the Chirplet matching atom parameters are calculated. By calculating the time-frequency distributions spectrum of detected guided waves echo signals, torsional, flexural and longitudinal guided waves modes are identified from the intact pipe, and the two wave-packets with torsional and flexural guided waves modes are also identified from the pipe with hole defect. The results showed that the matching pursuit method has a tremendous advantage to identify different guided waves modes in pipes nondestructive testing.
基金Project supported by the National Natural Science Foundation of China(Grant No.51977044).
文摘Using periodic permanent magnet(PPM)electromagnetic acoustic transducers(EMATs),different shear horizontal(SH)guided wave modes can form simultaneously in some situations,which can interfere with the inspection.The main cause of this phenomenon(typically named multiple modes)is related to the frequency bandwidth of excitation signals and the transducer spatial bandwidth.Simply narrowing the frequency bandwidth cannot effectively limit the number of different SH modes.Previous researches showed that unnecessary SH wave modes can be eliminated by using dual EMATs.However,in practical applications,it is more convenient to change the excitation frequency than to use dual EMATs.In this paper,the stress boundary conditions of the PPM-EMAT are analyzed,the analytical expression of SH guided wave is established,and the magnitude of SH guided wave mode under continuous tone and tone-burst input is obtained.A method to generate a single SH mode by re-selecting an operating point is proposed.Furthermore,the influence of the frequency bandwidth of the tone-burst signal is analyzed.Finally,a single SH mode excitation is achieved with tone-burst input.
基金This work was supported by the National Key Research and Development Program of China(Grant No.2016YFF0203002)the National Natural Science Foundation of China(Grant No.11702051)+1 种基金China Post-doctoral Science Foundation(Grant No.2017M610176)the Fundamental Research Funds for the Central Universities(DUT16ZD214).
文摘Probability-based diagnostic imaging(PDI)is one of the most well-known damage identification methods using guided waves.It is usually applied to diagnose damage in plates.The previous studies were dependent on the certain damage index(DI)which is always calculated from the guided wave signals.In conventional methods,DI is simply defined by comparing the real-time data with the baseline data as reference.However,the baseline signal is easily affected by varying environmental conditions of structures.In this paper,a reference-free diagnostic imaging method is developed to avoid the influence of environmental factors,such as temperature and load conditions.The DI is defined based on the mode conversion of multi-mode guided waves with realtime signals without baseline signals.To improve the accuracy of diagnosis,two terms are included in the reference-free DI.One is called energy DI,which is defined based on the feature of signal energy.The other is called correlation DI and is defined based on the correlation coefficient.Then the PDI algorithm can be carried out instantaneously according to the reference-free DI.The real-time signals which are used to calculate DI are collected by the piezoelectric lead zirconate titanate(PZT)transducers placed on both sides of a plate.The numerical simulations by the finite element(FE)method on aluminum plates with PZT arrays are performed to validate the effectiveness of the reference-free damage diagnostic imaging.The approach is validated by two different arrays:a circle network and a square network.The results of diagnostic imaging are demonstrated and discussed in this paper.Furthermore,the advantage of reference-free DI is investigated by comparing the accuracy of defined reference-free DI and energy DI.
基金supported by National Natural Science Foundation of China (Grant No. 10602004,Grant No. 50975006)Beijing Municipal Natural Science Foundation of China (Grant No. 2072003)+1 种基金Beijing Municipal Talent Developing Project of China (Grant No.20081B0501500173)Beijing Municipal Nova Program of China(Grant No. 2008A015)
文摘Ultrasonic guided wave inspection is an effective non-destructive testing method which can be used for stress level evaluation in steel strands.Unfortunately the propagation velocity of ultrasonic guided waves changes due to temperature shift making the prestress measurement of steel strands inaccurate and even sometimes impossible.In the course of solving the problem,this paper reports on quantitative research on the temperature dependence of ultrasonic longitudinal guided wave propagation in long range steel strands.In order to achieve the generation and reception of a chosen longitudinal mode in a steel strand with a helical shaped surface,a new type of magnetostrictive transducer was developed,characterized by a group of thin clips and three identical permanent magnets.Excitation and reception of ultrasonic guided waves in a steel strand were performed experimentally.Experimental results shows that in the temperature range from-4 ℃ to 34 ℃,the propagation velocity of the L(0,1) mode at 160 kHz linearly decreased with increasing temperature and its temperature dependent coefficient was 0.90(m·s-1 ·(℃)-1) which is very close to the theoretical prediction.The effect of dimension deviation between the helical and center wires and the effect of the thermal expansion of the steel strand on ultrasonic longitudinal guided wave propagation were also analyzed.It was found that these effects could be ignored compared with the change in the material mechanical properties of the steel strands due to temperature shift.It was also observed that the longitudinal guided wave mode was somewhat more sensitive to temperature changes compared with conventional ultrasonic waves theoretically.Therefore,it is considered that the temperature effect on ultrasonic longitudinal guided wave propagation in order to improve the accuracy of stress measurement in prestressed steel strands.Quantitative research on the temperature dependence of ultrasonic guided wave propagation in steel strands provides an important basis for the compensation of temperature effects in stress measurement in steel strands by using ultrasonic guided wave inspection.
文摘A model of guided circumferential waves propagating in double-walled carbon nanotubes is built by the theory of wave propagation in continuum mechanics, while the van der Waals force between the inner and outer nanotube has been taken into account in the model. The dispersion curves of the guided circumferential wave propagation are studied, and some dispersion characteristics are illustrated by comparing with those of single-walled carbon nanotubes. It is found that in double-walled carbon nanotubes, the guided circumferential waves will propagate in more dispersive ways. More interactions between neighboring wave modes may take place. In particular, it has been found that a couple of wave modes may disappear at a certain frequency and that, while a couple of wave modes disappear, another new couple of wave modes are excited at the same wave number.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11474361,11474093 and 11274388
文摘The effect of second-harmonic generation (SHG) by primary (fundamental) circumferential guided wave (CGW) propagation is investigated from a numerical standpoint. To enable that the second harmonic of the primary CGW mode can accumulate along the circumferential direction, an appropriate mode pair of primary and double frequency CGWs is chosen. Finite element simulations and evaluations of nonlinear CGW propagation are analyzed for the selected CGW mode pair. The numerical simulations performed directly demonstrate that the response of SHG is completely generated by the desired primary CGW mode that satisfies the condition of phase velocity matching at a specific driving frequency, and that the second harmonic of the primary CGW mode does have a cumulative effect with circumferential angles. The numerical perspective obtained yields an insight into the complicated physical process of SHG of primary CGW propagation unavailable previously.
基金supported by the National Natural Science Foundation of China(Nos.51575185,51175178)
文摘Pipeline plays an indispensable role in process industries,because the progressing crack-like defects of in it may result in serious accidents and significant economic losses.Therefore,it is essential to detect the cracks occurred in pipelines.The axial crack-like defects in elbows with different angle are inspected by using the T(0,1)mode guided waves,in which different configurations including 45°,90°,135°and 180°(straight pipe)are considered respectively.Firstly,the detection sensitivity for different defect location is experimentally investigated.After that,finite element simulation is used to explore the propagation behaviors of T(0,1)mode in different bend structures.Simulation and experiment results show that the crack in different areas of the elbow can affect the detection sensitivity.It can be found that the detection sensitivity of crack in the middle area of the elbow is higher compared to the extrados and intrados of the elbow.Finally,the mode conversion is also investigated when the T(0,1)crosses the bend,and the results show that bend is a key factor to the mode conversion phenomenon which presents between the T(0,1)mode and F(1,2)mode.
基金supported by the Youth Science Research Foundation of China University of Mining and Technology (Grant No. 2009A058)the Fundamental Research Funds for the Central Universities (Grant No. 2010Qnb06)the Natural Science Foundation of Shanghai Committee of Science and Technology (Grant No. 10ZR1433500)
文摘A broad band polarization-independent reflector working in the telecommunication C+L band is proposed using the guided mode resonance effect of a periodic surface relief element deposited by a layer of silicon medium. It is shown that this structure can provide high reflection (R 〉 99.5%) and wide angular bandwidth (θ≈ 20°, R 〉 98%) for both TE and TM polarizations over a wide spectrum band 1.5 μm-l.6 μm. Furthermore, it is found by rigorous coupled wave analysis that the polarization-independent reflector proposed here is tolerant of a deviation of grating thickness, which makes it very easy to fabricate in experiments.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11474195,11274226,51478258 and 51405287
文摘We investigate the three-dimensional (3D) scattering problem of an incident plane shear horizontal wave by a partly through-thickness hole in an isotropic plate, in which the Lamb wave modes are also included due to the mode conversions by the scattering obstacle in the 3D problem. An analytical model is presented such that the wave fields are expanded in all of propagating and evanescent SH modes and Lamb modes, and the scattered far-fields of three fundamental guided wave modes are analyzed numerically for different sizes of the holes and frequencies. The numerical results are verified by comparing with those obtained by using the approximate Poisson/Mindlin plate model for small hole radius and low frequency. It is also found that the scattering patterns are different from those of the SO wave incidence. Our work is useful for quantitative evaluation of the plate-like structure by ultrasonic guided waves.
基金supported by the Youth Science Research Foundation of China University of Mining and Technology (Grant No. 2009A058)the Natural Science Foundation of Shanghai Committee of Science and Technology (Grant No. 10ZR1433500)
文摘A broadband non-polarizing beam splitter (NPBS) operating in the telecommunication C+L band is designed by using the guided mode resonance effect of periodic silicon-on-insulator (SOI) elements. It is shown that this double layer SOI structure can provide ~50/50 beam ratio with the maximum divergences between reflection and transmission being less than 8% over the spectrum of 1.4μm-l.7 μm and i% in the telecommunication band for both TE and TM polarizations. The physical basis of this broadband non-polarizing property is on the simultaneous excitation of the TE and TM strong modulation waveguide modes near the designed spectrum band. Meanwhile, the electric field distributions for both TE and TM polarizations verify the resonant origin of spectrum in the periodic SOI structure. Furthermore, it is demonstrated with our calculations that the beam splitter proposed here is tolerant to the deviations of incident angle and structure parameters, which make it very easy to be fabricated with current IC technology.
基金Project supported by the National Key Basic Research Special Foundation (Grant No. 2010CB327605)National High-Technology Research and Development Program of China (Grant No. 2009AA01Z220)+2 种基金the Key Grant of the Chinese Ministry of Education (Grant No.109015)the Discipline Co-construction Project of Beijing Municipal Commission of Education (Grant No. YB20081001301)the Specialized Research Fund for the Doctoral Program of Beijing University of Posts and Telecommunications (Grant No. CX201023)
文摘This paper investigates the guided-mode characteristics of hollow-core photonic band-gap fibre (HC-PBGF) with interstitial holes fabricated by an improved twice stack-and-draw technique at visible wavelengths. Based on the simulation model with interstitial holes, the influence of glass interstitial apexes on photonic band-gaps is discussed. The existing forms of guided-mode in part band gaps are shown by using the full-vector plane-wave method. In the experiment, the observed transmission spectrum corresponds to the part band gaps obtained by simulation. The fundamental and second-order guided-modes with mixture of yellow and green light are observed through choosing appropriate fibre length and adjusting coupling device. The loss mechanism of guided-modes in HC-PBGF is also discussed.
基金Project supported by the National High-Tech Research and Development Program of China(Grant No.2011 AA050518)
文摘A compact tunable guided-mode resonant filter (GMRF) in the telecommunication region near the 1550 nm wave-length is proposed in this paper. Particle swarm optimization (PSO) is used to design the GMRF. The tunability of the GMRF is achieved by an MEMS-based physical movement (in the horizontal or vertical direction) combined with an incident angle in a certain range. The results show that the resonant wavelength tuning of 110 nm (140mm) is obtained by horizontal movement of 168 nm (vertical movement of 435 nm) combined with an about 11° variation of incident angle.
基金The National Natural Science Foundation of China(No.60977038)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20110092110016)+1 种基金the National Basic Research Program of China(973Program)(No.2011CB302004)the Foundation of Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology of Ministry of Education of China(No.201204)
文摘Based on attenuated total reflection (ATR) and thermo-optic effect, the polymeric thin film planar optical waveguide is used as the temperature sensor, and the factors influencing the sensitivity of the temperature sensor are comprehensively analyzed. Combined with theoretical analysis and experimental investigation, the sensitivity of the temperature sensor is related to the thicknesses of the upper cladding layer, the waveguide layer, the optical loss of the polymer material and the guided wave modes. The results show that the slope value about reflectivity and temperature, which stands for the sensitivity of the polymer thin film temperature sensor, is associated with the waveguide film thickness and the guided wave modes, and the slope value is the highest in the zero reflectance of a certain transverse electric (TE) mode. To improve the sensitivity of the temperature sensor, the sensor's working incident light exterior angle α should be chosen under a certain TE mode with the reflectivity to be zero. This temperature sensor is characterized by high sensitivity and simple structure and it is easily fabricated.
基金partly supported by the National Key Basic Research Special Foundation of China (Grant Nos. 2010CB327605 and 2010CB328300)the National High-Technology Research and Development Program of China (Grant No. 2009AA01Z220)+3 种基金the Key Grant of the Chinese Ministry of Education (Grant No. 109015)the Discipline Co-construction Project of Beijing Municipal Commission of Education,China (Grant No. YB20081001301)the Open Fund of Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications),Chinese Ministry of Educationthe Specialized Research Fund for the Doctoral Program of Beijing University of Posts and Telecommunications (Grant No. CX201023)
文摘With the full-vector plane-wave method (FVPWM) and the full-vector beam propagation method (FVBPM), the dependences of the band-gap and mode characteristics on material index and cladding structure parameter in anti- resonance guiding photonic crystal fibres (ARGPCFs) are sufficiently analysed. An ARGPCF operating in the near- infrared wavelength is shown. The influences of the high index cylinders, glass interstitial apexes and silica structure on the characteristics of band-gaps and modes are deeply investigated. The equivalent planar waveguide theory is used for analysing such an ARGPCF filled by the isotropic materials, and the resonance and the anti-resonance characteristics r:~n h~ w~|] r^r~dlrtpd