期刊文献+
共找到65篇文章
< 1 2 4 >
每页显示 20 50 100
1-Bit compressive sensing: Reformulation and RRSP-based sign recovery theory 被引量:4
1
作者 ZHAO YunBin XU ChunLei 《Science China Mathematics》 SCIE CSCD 2016年第10期2049-2074,共26页
Recently, the 1-bit compressive sensing (1-bit CS) has been studied in the field of sparse signal recovery. Since the amplitude information of sparse signals in 1-bit CS is not available, it is often the support or ... Recently, the 1-bit compressive sensing (1-bit CS) has been studied in the field of sparse signal recovery. Since the amplitude information of sparse signals in 1-bit CS is not available, it is often the support or the sign of a signal that can be exactly recovered with a decoding method. We first show that a necessary assumption (that has been overlooked in the literature) should be made for some existing theories and discussions for 1-bit CS. Without such an assumption, the found solution by some existing decoding algorithms might be inconsistent with 1-bit measurements. This motivates us to pursue a new direction to develop uniform and nonuniform recovery theories for 1-bit CS with a new decoding method which always generates a solution consistent with 1-bit measurements. We focus on an extreme case of 1-bit CS, in which the measurements capture only the sign of the product of a sensing matrix and a signal. We show that the 1-bit CS model can be reformulated equivalently as an t0-minimization problem with linear constraints. This reformulation naturally leads to a new linear-program-based decoding method, referred to as the 1-bit basis pursuit, which is remarkably different from existing formulations. It turns out that the uniqueness condition for the solution of the 1-bit basis pursuit yields the so-called restricted range space property (RRSP) of the transposed sensing matrix. This concept provides a basis to develop sign recovery conditions for sparse signals through 1-bit measurements. We prove that if the sign of a sparse signal can be exactly recovered from 1-bit measurements with 1-bit basis pursuit, then the sensing matrix must admit a certain RRSP, and that if the sensing matrix admits a slightly enhanced RRSP, then the sign of a k-sparse signal can be exactly recovered with 1-bit basis pursuit. 展开更多
关键词 1-bit compressive sensing restricted range space property 1-bit basis pursuit linear program l0-minimization sparse signal recovery
原文传递
采用1-bit压缩感知的信号识别网络黑盒对抗攻击方法
2
作者 郭宇琦 李东阳 +1 位作者 尹志宁 马德魁 《信息工程大学学报》 2024年第5期593-600,共8页
在无线信号识别的神经网络对抗样本研究中,针对目标网络结构参数与数据集均未知,且查询无法获取识别置信度或识别结果的黑盒攻击场景,提出一种采用1-bit压缩感知的对抗样本生成方法。假设攻击者能够通过查询获取某一批信号样本在待攻击... 在无线信号识别的神经网络对抗样本研究中,针对目标网络结构参数与数据集均未知,且查询无法获取识别置信度或识别结果的黑盒攻击场景,提出一种采用1-bit压缩感知的对抗样本生成方法。假设攻击者能够通过查询获取某一批信号样本在待攻击模型下的识别准确率。首先,将模型准确率的梯度视为待感知的稀疏变量,并利用一批样本准确率高于或低于另一批的信息(用1或-1表示)构建1-bit压缩感知模型。其次,通过多次查询并估计梯度,结合0范数约束,使用梯度下降法迭代优化信号扰动,从而生成有效的对抗样本。最后,使用对抗样本攻击目标网络以降低识别准确率。实验结果表明,该方法在公开信号调制识别数据集上能够将识别准确率从79.02%降低至65.39%。相比于现有其他方法,该方法进一步拓展了黑盒攻击的限制条件。 展开更多
关键词 深度学习 对抗样本 信号识别 1-bit压缩感知 黑盒对抗攻击
下载PDF
Joint 2D DOA and Doppler frequency estimation for L-shaped array using compressive sensing 被引量:5
3
作者 WANG Shixin ZHAO Yuan +3 位作者 LAILA Ibrahim XIONG Ying WANG Jun TANG Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第1期28-36,共9页
A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conven... A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm. 展开更多
关键词 electronic warfare L-shaped array joint parameter estimation L1-norm minimization Bayesian compressive sensing(CS) pair matching
下载PDF
A Reliable Iteration Algorithm for One-Bit Compressive Sensing on the Unit Sphere
4
作者 Yan-cheng LU Ning BI An-hua WAN 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2024年第3期801-822,共22页
The one-bit compressed sensing problem is of fundamental importance in many areas,such as wireless communication,statistics,and so on.However,the optimization of one-bit problem coustrained on the unit sphere lacks an... The one-bit compressed sensing problem is of fundamental importance in many areas,such as wireless communication,statistics,and so on.However,the optimization of one-bit problem coustrained on the unit sphere lacks an algorithm with rigorous mathematical proof of convergence and validity.In this paper,an iteration algorithm is established based on difference-of-convex algorithm for the one-bit compressed sensing problem constrained on the unit sphere,with iterating formula■,where C is the convex cone generated by the one-bit measurements andη_(1)>η_(2)>1/2.The new algorithm is proved to converge as long as the initial point is on the unit sphere and accords with the measurements,and the convergence to the global minimum point of the l_(1)norm is discussed. 展开更多
关键词 one-bit compressed sensing difference of convex algorithm iteration algorithm 1-minimization
原文传递
An improved Gaussian frequency domain sparse inversion method based on compressed sensing 被引量:4
5
作者 Liu Yang Zhang Jun-Hua +2 位作者 Wang Yan-Guang Liu Li-Bin Li Hong-Mei 《Applied Geophysics》 SCIE CSCD 2020年第3期443-452,共10页
The traditional compressed sensing method for improving resolution is realized in the frequency domain.This method is aff ected by noise,which limits the signal-to-noise ratio and resolution,resulting in poor inversio... The traditional compressed sensing method for improving resolution is realized in the frequency domain.This method is aff ected by noise,which limits the signal-to-noise ratio and resolution,resulting in poor inversion.To solve this problem,we improved the objective function that extends the frequency domain to the Gaussian frequency domain having denoising and smoothing characteristics.Moreover,the reconstruction of the sparse refl ection coeffi cient is implemented by the mixed L1_L2 norm algorithm,which converts the L0 norm problem into an L1 norm problem.Additionally,a fast threshold iterative algorithm is introduced to speed up convergence and the conjugate gradient algorithm is used to achieve debiasing for eliminating the threshold constraint and amplitude error.The model test indicates that the proposed method is superior to the conventional OMP and BPDN methods.It not only has better denoising and smoothing eff ects but also improves the recognition accuracy of thin interbeds.The actual data application also shows that the new method can eff ectively expand the seismic frequency band and improve seismic data resolution,so the method is conducive to the identifi cation of thin interbeds for beach-bar sand reservoirs. 展开更多
关键词 compressed sensing Gaussian frequency domain L1-L2 norm thin interbeds beach-bar sand resolution signal-to-noise ratio
下载PDF
DOA estimation of high-dimensional signals based on Krylov subspace and weighted l_(1)-norm
6
作者 YANG Zeqi LIU Yiheng +4 位作者 ZHANG Hua MA Shuai CHANG Kai LIU Ning LYU Xiaode 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期532-540,F0002,共10页
With the extensive application of large-scale array antennas,the increasing number of array elements leads to the increasing dimension of received signals,making it difficult to meet the real-time requirement of direc... With the extensive application of large-scale array antennas,the increasing number of array elements leads to the increasing dimension of received signals,making it difficult to meet the real-time requirement of direction of arrival(DOA)estimation due to the computational complexity of algorithms.Traditional subspace algorithms require estimation of the covariance matrix,which has high computational complexity and is prone to producing spurious peaks.In order to reduce the computational complexity of DOA estimation algorithms and improve their estimation accuracy under large array elements,this paper proposes a DOA estimation method based on Krylov subspace and weighted l_(1)-norm.The method uses the multistage Wiener filter(MSWF)iteration to solve the basis of the Krylov subspace as an estimate of the signal subspace,further uses the measurement matrix to reduce the dimensionality of the signal subspace observation,constructs a weighted matrix,and combines the sparse reconstruction to establish a convex optimization function based on the residual sum of squares and weighted l_(1)-norm to solve the target DOA.Simulation results show that the proposed method has high resolution under large array conditions,effectively suppresses spurious peaks,reduces computational complexity,and has good robustness for low signal to noise ratio(SNR)environment. 展开更多
关键词 direction of arrival(DOA) compressed sensing(CS) Krylov subspace l_(1)-norm dimensionality reduction
下载PDF
Comparison of MRI Under-Sampling Techniques for Compressed Sensing with Translation Invariant Wavelets Using FastTestCS: A Flexible Simulation Tool
7
作者 Christopher Baker 《Journal of Signal and Information Processing》 2016年第4期252-271,共20页
A sparsifying transform for use in Compressed Sensing (CS) is a vital piece of image reconstruction for Magnetic Resonance Imaging (MRI). Previously, Translation Invariant Wavelet Transforms (TIWT) have been shown to ... A sparsifying transform for use in Compressed Sensing (CS) is a vital piece of image reconstruction for Magnetic Resonance Imaging (MRI). Previously, Translation Invariant Wavelet Transforms (TIWT) have been shown to perform exceedingly well in CS by reducing repetitive line pattern image artifacts that may be observed when using orthogonal wavelets. To further establish its validity as a good sparsifying transform, the TIWT is comprehensively investigated and compared with Total Variation (TV), using six under-sampling patterns through simulation. Both trajectory and random mask based under-sampling of MRI data are reconstructed to demonstrate a comprehensive coverage of tests. Notably, the TIWT in CS reconstruction performs well for all varieties of under-sampling patterns tested, even for cases where TV does not improve the mean squared error. This improved Image Quality (IQ) gives confidence in applying this transform to more CS applications which will contribute to an even greater speed-up of a CS MRI scan. High vs low resolution time of flight MRI CS re-constructions are also analyzed showing how partial Fourier acquisitions must be carefully addressed in CS to prevent loss of IQ. In the spirit of reproducible research, novel software is introduced here as FastTestCS. It is a helpful tool to quickly develop and perform tests with many CS customizations. Easy integration and testing for the TIWT and TV minimization are exemplified. Simulations of 3D MRI datasets are shown to be efficiently distributed as a scalable solution for large studies. Comparisons in reconstruction computation time are made between the Wavelab toolbox and Gnu Scientific Library in FastTestCS that show a significant time savings factor of 60×. The addition of FastTestCS is proven to be a fast, flexible, portable and reproducible simulation aid for CS research. 展开更多
关键词 compressed sensing Translation Invariant Wavelet Simulation Software Total Variation l1 Minimization
下载PDF
1-Bit压缩感知盲重构算法 被引量:5
8
作者 张京超 付宁 杨柳 《电子与信息学报》 EI CSCD 北大核心 2015年第3期567-573,共7页
1-Bit压缩感知(CS)是压缩感知理论的一个重要分支。该领域中二进制迭代硬阈值(BIHT)算法重构精度高且一致性好,是一种有效的重构算法。该文针对BIHT算法重构过程需要信号稀疏度为先验信息的问题,提出一种稀疏度自适应二进制迭代硬阈值算... 1-Bit压缩感知(CS)是压缩感知理论的一个重要分支。该领域中二进制迭代硬阈值(BIHT)算法重构精度高且一致性好,是一种有效的重构算法。该文针对BIHT算法重构过程需要信号稀疏度为先验信息的问题,提出一种稀疏度自适应二进制迭代硬阈值算法,简称为SABIHT算法。该算法修正了BIHT算法,首先通过自适应过程自动调节硬阈值参数,然后利用测试条件估计信号的稀疏度,最终实现不需要确切信号稀疏度的1-Bit压缩感知盲重构。理论分析和仿真结果表明,该算法较好地实现了未知信号稀疏度的精确重建,并且与BIHT算法相比重构精度及算法复杂度均相当。 展开更多
关键词 压缩感知 1-bit压缩感知 盲重构 二进制迭代硬阈值
下载PDF
自适应阈值的1-bit压缩感知算法 被引量:3
9
作者 司菁菁 许培 程银波 《高技术通讯》 EI CAS 北大核心 2019年第2期134-141,共8页
针对二进制迭代硬阈值(BIHT)算法中固定的量化阈值在一定程度上限制了该算法重构性能的问题,提出了一种基于自适应阈值的二进制迭代硬阈值(AT-BIHT)算法,用于实现可压缩信号的1-bit压缩感知(CS)采集与重构。该算法采用基于自适应阈值的... 针对二进制迭代硬阈值(BIHT)算法中固定的量化阈值在一定程度上限制了该算法重构性能的问题,提出了一种基于自适应阈值的二进制迭代硬阈值(AT-BIHT)算法,用于实现可压缩信号的1-bit压缩感知(CS)采集与重构。该算法采用基于自适应阈值的二进制量化器替代了BIHT算法中的符号函数,根据已获得的重构信号为当前测量值的1-bit量化选择合适的量化阈值;在继承BIHT算法优点的基础上,有效提高了重构性能。仿真实验表明,对于随机稀疏信号和实际心电信号,AT-BIHT算法的重建性能均高于BIHT算法。 展开更多
关键词 压缩感知(CS) 1-bit压缩感知 二进制迭代硬阈值(BIHT) 自适应阈值 自适应二进制迭代硬阈值(AH-BIHT)
下载PDF
基于广义模式耦合稀疏Bayesian学习的1-Bit压缩感知
10
作者 司菁菁 韩亚男 +1 位作者 张磊 程银波 《系统工程与电子技术》 EI CSCD 北大核心 2020年第12期2700-2707,共8页
在1-Bit压缩感知(compressive sensing,CS)框架下,将信号的稀疏结构先验引入广义稀疏Bayesian学习(generalized sparse Bayesian learning,Gr-SBL),研究基于Gr-SBL的1-Bit CS重构。将广义线性模型与模式耦合稀疏Bayesian学习相结合,提... 在1-Bit压缩感知(compressive sensing,CS)框架下,将信号的稀疏结构先验引入广义稀疏Bayesian学习(generalized sparse Bayesian learning,Gr-SBL),研究基于Gr-SBL的1-Bit CS重构。将广义线性模型与模式耦合稀疏Bayesian学习相结合,提出了一种基于广义模式耦合稀疏Bayesian学习1-Bit CS重构算法,简称为1-Bit Gr-PC-SBL算法。该算法将1-Bit CS重构问题迭代地分解成一系列标准CS重构问题,在信号稀疏模式未知的情况下,基于模式耦合稀疏Bayesian学习实现信号重构。进而,引入阈值自适应的二进制量化,设计了自适应阈值的1-Bit Gr-PC-SBL算法,进一步提升了算法的信号重构性能。 展开更多
关键词 1-bit压缩感知 广义稀疏Bayesian学习 模式耦合 自适应阈值
下载PDF
Efficient Channel Estimation Techniques for MIMO Systems with 1-Bit ADC 被引量:4
11
作者 Hany SHussein Shaimaa Hussein Ehab Mahmoud Mohamed 《China Communications》 SCIE CSCD 2020年第5期50-64,共15页
With a low resolution 1-bit ADC on its receiver(RX) side, MIMO with 1-bit ADC took a considerable step in the fulfillment of the hardware complexity constrains of the internet of things(IoT) PHY layer design. However,... With a low resolution 1-bit ADC on its receiver(RX) side, MIMO with 1-bit ADC took a considerable step in the fulfillment of the hardware complexity constrains of the internet of things(IoT) PHY layer design. However, applying 1-bit ADC at MIMO RX results in severe nonlinear quantization error. By which, almost all received signal amplitude information is completely distorted. Thus, MIMO channel estimation is considered as a major barrier towards practical realization of 1-bit ADC MIMO system. In this paper, two efficient sparsity-based channel estimation techniques are proposed for 1-bit ADC MIMO systems, namely the low complexity sparsity-based channel estimation(LCSCE), and the iterative adaptive sparsity channel estimation(IASCE). In these techniques, the sparsity of the 1-bit ADC MIMO channel is exploited to propose a new adaptive and iterative compressive sensing(CS) recovery algorithm to handle the 1-bit ADC quantization effect. The proposed algorithms are tested with the state-of-the-art 1-bit ADC MIMO constant envelope modulation(MIMO-CEM). The 1-bit ADC MIMO-CEM system is chosen as it fulfills both energy and hardware complexity constraints of the IoT PHY layer. Simulation results reveal the high effectiveness of the proposed algorithms in terms of spectral efficiency(SE) and computational complexity. The proposed LCSCE reduces the computational complexity of the 1-bit ADC MIMO-CEM channel estimation by 86%, while the IASCE reduces it by 96% compared to the recent techniques of MIMO-CEM channel estimation. Moreover, the proposed LCSCE and IASCE improve the spectrum efficiency by 76 % and 73 %, respectively, compared to the recent techniques. 展开更多
关键词 channel estimation 1-bit ADC MIMO sparsity recovery compressive sensing Internet of things
下载PDF
叠加特征辅助的1-bit CS音频传输 被引量:1
12
作者 万东琴 卿朝进 +2 位作者 阳庆瑶 蔡斌 余旺 《计算机工程与应用》 CSCD 北大核心 2020年第16期69-74,共6页
针对1-bit压缩感知音频传输存在重构精度与音频质量较差的问题,提出稀疏音频信号特征信息辅助的1-bit重构的方法。发送端利用稀疏音频信号的部分支撑集构建特征信息,并将特征信息扩频后叠加到1-bit压缩的音频信号上传输;接收端恢复特征... 针对1-bit压缩感知音频传输存在重构精度与音频质量较差的问题,提出稀疏音频信号特征信息辅助的1-bit重构的方法。发送端利用稀疏音频信号的部分支撑集构建特征信息,并将特征信息扩频后叠加到1-bit压缩的音频信号上传输;接收端恢复特征信息和1-bit压缩的音频信号,并构建特征辅助的重构算法以恢复音频信号。相较于经典的1-bit音频压缩重构方法,所提方法可在不增加频谱开销的情况下改善恢复音频的MSE(Mean Square Error)值和MOS(Mean Opinion Score)评分。 展开更多
关键词 音频传输 1-bit压缩感知 特征辅助 叠加序列
下载PDF
1-Bit压缩感知理论研究
13
作者 贾威 《河南科技》 2020年第23期11-14,共4页
1-Bit压缩感知作为压缩感知理论的重要分支,在原有理论的基础上进一步简化,在量化时仅保留测量值的符号,并能由此重构信号,使采样和量化能够同时进行,提高了采样速度,节约了存储空间。本文介绍了1-Bit压缩感知理论的发展过程、基本理论... 1-Bit压缩感知作为压缩感知理论的重要分支,在原有理论的基础上进一步简化,在量化时仅保留测量值的符号,并能由此重构信号,使采样和量化能够同时进行,提高了采样速度,节约了存储空间。本文介绍了1-Bit压缩感知理论的发展过程、基本理论、实际应用,并且详细分析了常用的、一致性较好的二进制迭代硬阈值算法和符号匹配追踪算法。 展开更多
关键词 压缩感知 1-bit压缩感知 二进制迭代硬阈值 符号匹配追踪
下载PDF
l_(1)-αl_(2)最小化模型下不同噪声的误差估计
14
作者 王俊丽 穆晓芳 温瑞萍 《太原师范学院学报(自然科学版)》 2023年第2期13-18,共6页
压缩感知主要是考虑从较少的采样数据中以高概率精确地重构原高维稀疏信号.基于l_(1)-αl_(2)(0<α≤1)最小化模型,大多数文献研究信号的重构问题,而对于图像重构方面很少研究,尤其对于高斯噪声和l_(∞)-有界噪声下的图像重构.根据... 压缩感知主要是考虑从较少的采样数据中以高概率精确地重构原高维稀疏信号.基于l_(1)-αl_(2)(0<α≤1)最小化模型,大多数文献研究信号的重构问题,而对于图像重构方面很少研究,尤其对于高斯噪声和l_(∞)-有界噪声下的图像重构.根据测量矩阵的约束等距性得到这两种噪声下图像重构的误差估计. 展开更多
关键词 压缩感知 图像重构 l_(1)-αl_(2)最小化 约束等距性 误差估计
下载PDF
Theory of Compressive Sensing via l1-Minimization:a Non-RIP Analysis and Extensions 被引量:12
15
作者 Yin Zhang 《Journal of the Operations Research Society of China》 EI 2013年第1期79-105,共27页
Compressive sensing(CS)is an emerging methodology in computational signal processing that has recently attracted intensive research activities.At present,the basic CS theory includes recoverability and stability:the f... Compressive sensing(CS)is an emerging methodology in computational signal processing that has recently attracted intensive research activities.At present,the basic CS theory includes recoverability and stability:the former quantifies the central fact that a sparse signal of length n can be exactly recovered from far fewer than n measurements via l1-minimization or other recovery techniques,while the latter specifies the stability of a recovery technique in the presence of measurement errors and inexact sparsity.So far,most analyses in CS rely heavily on the Restricted Isometry Property(RIP)for matrices.In this paper,we present an alternative,non-RIP analysis for CS via l1-minimization.Our purpose is three-fold:(a)to introduce an elementary and RIP-free treatment of the basic CS theory;(b)to extend the current recoverability and stability results so that prior knowledge can be utilized to enhance recovery via l1-minimization;and(c)to substantiate a property called uniform recoverability of l1-minimization;that is,for almost all random measurement matrices recoverability is asymptotically identical.With the aid of two classic results,the non-RIP approach enables us to quickly derive from scratch all basic results for the extended theory. 展开更多
关键词 compressive sensing l1-Minimization Non-RIP analysis Recoverability and stability Prior information Uniform recoverability
原文传递
基于压缩感知理论的远震P波数据重建研究
16
作者 杨歧焱 吴庆举 +4 位作者 魏亚杰 曹静杰 蔡志成 杨志权 盛艳蕊 《地震学报》 CSCD 北大核心 2024年第3期413-424,共12页
本文将基于压缩感知理论的地震观测数据重建方法用于天然远震事件的P波到时处理之中,基于曲波(curvelet)变换,建立基于L_(1)范数的正则化反演模型,并采用迭代收缩阈值算法(ISTA)求解该模型。针对在内蒙古布设的流动地震台阵记录到的远... 本文将基于压缩感知理论的地震观测数据重建方法用于天然远震事件的P波到时处理之中,基于曲波(curvelet)变换,建立基于L_(1)范数的正则化反演模型,并采用迭代收缩阈值算法(ISTA)求解该模型。针对在内蒙古布设的流动地震台阵记录到的远震波形数据,对其进行稀疏采样,采用稀疏反演重建方法对欠采样数据进行重建,并拾取重建数据的P波到时,之后开展远震P波层析成像进行验证。研究结果表明,远震天然地震观测数据在曲波变换中表现出稀疏性,可利用压缩感知方法实现远震P波数据的完备化处理。基于内蒙古流动地震台阵数据三维P波成像也表明,基于压缩感知的数据重建技术可以提高地震层析成像的分辨率,且压缩感知采集技术在天然地震研究中具有潜在的应用价值。 展开更多
关键词 压缩感知 曲波变换 远震P波 数据重建 L_(1)范数
下载PDF
一种基于盲运算的1比特压缩感知重建算法 被引量:1
17
作者 闫斌 陈浩 +1 位作者 王文东 周小佳 《西南交通大学学报》 EI CSCD 北大核心 2015年第2期264-269,共6页
为了解决1比特压缩感知中符号匹配追踪算法(matching sign pursuit)在稀疏度未知的情况下不能自适应重构信号的问题,提出了向前/向后迭代符号匹配追踪算法(forward-backward matching sign pursuit,FBMSP).该算法以逐步逼近理论为核心,... 为了解决1比特压缩感知中符号匹配追踪算法(matching sign pursuit)在稀疏度未知的情况下不能自适应重构信号的问题,提出了向前/向后迭代符号匹配追踪算法(forward-backward matching sign pursuit,FBMSP).该算法以逐步逼近理论为核心,通过逐步扩大支撑集来扩大搜索范围,把相邻两次迭代的差值作为终止条件,在MSP算法模型下进行盲运算,以实现信号的重构.数值试验表明:在控制迭代系数α=8,β=1的情况下,FBMSP算法比传统的符号匹配追踪算法重构精度提高了3 d B,运算时间减少了40%. 展开更多
关键词 信号处理 压缩感知 逼近论 1比特 符号匹配追踪
下载PDF
基于l_(1)-l_(2)最小化的部分支集已知的信号重建 被引量:2
18
作者 宋儒瑛 武思琪 关晋瑞 《湖北民族大学学报(自然科学版)》 CAS 2022年第1期81-85,共5页
压缩感知是近几年应用数学范畴较为热门的前沿课题,是一种新型的采样理论,主要是考虑从较少的线性测量中利用信号自身的各种先验信息来恢复高维稀疏信号.文章通过l_(1)-l_(2)最小化方法对部分支集已知的信号提出了重建的一个新的充分条... 压缩感知是近几年应用数学范畴较为热门的前沿课题,是一种新型的采样理论,主要是考虑从较少的线性测量中利用信号自身的各种先验信息来恢复高维稀疏信号.文章通过l_(1)-l_(2)最小化方法对部分支集已知的信号提出了重建的一个新的充分条件,并得到信号恢复稳定和鲁棒的误差估计. 展开更多
关键词 压缩感知 部分支集已知 l_(1)-l_(2)最小化 限制等距性 误差估计
下载PDF
基于相干性框架的部分支集已知的信号重建
19
作者 武思琪 宋儒瑛 关晋瑞 《西华师范大学学报(自然科学版)》 2024年第4期367-374,共8页
文章使用l_(2)-αl_(2)(0<α≤1)最小化模型利用信号自身的先验支撑信息来重建高维稀疏信号。这是首篇基于相干性框架的部分支集已知的信号重建,重点讨论3种噪声(l_(2)有界噪声、Dantzig Selector噪声和脉冲噪声)情形下信号鲁棒恢复... 文章使用l_(2)-αl_(2)(0<α≤1)最小化模型利用信号自身的先验支撑信息来重建高维稀疏信号。这是首篇基于相干性框架的部分支集已知的信号重建,重点讨论3种噪声(l_(2)有界噪声、Dantzig Selector噪声和脉冲噪声)情形下信号鲁棒恢复的充分条件和误差估计。 展开更多
关键词 压缩感知 部分支集已知 l_(1)-αl_(2)最小化 相干性 误差估计
下载PDF
分布式的1 bit压缩频谱感知算法
20
作者 赵知劲 胡伟康 胡俊伟 《电信科学》 北大核心 2014年第9期106-110,共5页
由于频谱感知中信道稀疏度动态变化,导致分布式频谱感知网络中节点间信息传输频繁,消耗感知网络通信带宽。为了缓解网络通信带宽压力,提出分布式的1 bit压缩频谱感知算法。各节点对感知数据进行压缩采样并1 bit量化,然后融合节点采用JS... 由于频谱感知中信道稀疏度动态变化,导致分布式频谱感知网络中节点间信息传输频繁,消耗感知网络通信带宽。为了缓解网络通信带宽压力,提出分布式的1 bit压缩频谱感知算法。各节点对感知数据进行压缩采样并1 bit量化,然后融合节点采用JSM-2模型对数据进行融合,最后通过BIHT算法重构信号频谱,实现频谱感知。仿真结果表明,在低信噪比和较少的采样数目下,分布式的1 bit压缩频谱感知算法能具有较好的频谱检测性能,是一种可实用的频谱感知方法。 展开更多
关键词 压缩感知 频谱感知 1 bit量化
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部