期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Catalytically Important Residues in E. coli 1-Deoxy-D-Xylulose 5-Phosphate Synthase
1
作者 Jordi Querol-Audí Albert Boronat +1 位作者 Josep J. Centelles Santiago Imperial 《Journal of Biosciences and Medicines》 2014年第4期30-35,共6页
1-deoxy-D-xylulose 5-phosphate synthase (DXS) catalyzes the initial step of the 2-C-methyl-D- erythritol 4-phosphate (MEP) pathway consisting in the condensation of (hydroxiethyl)thiamin derived from pyruvate with D-g... 1-deoxy-D-xylulose 5-phosphate synthase (DXS) catalyzes the initial step of the 2-C-methyl-D- erythritol 4-phosphate (MEP) pathway consisting in the condensation of (hydroxiethyl)thiamin derived from pyruvate with D-glyceraldehyde 3-phosphate (GAP) to yield 1-deoxy-D-xylulose 5-phosphate (DXP). The role of the conserved residues H49, E370, D427 and H431 of E. coli DXS was examined by site-directed mutagenesis and kinetic analysis of the purified recombinant enzyme mutants. Mutants at position H49 showed a severe reduction in their specific activities with a decrease of the kcat/KM ratio by two orders of magnitude lower than the wild-type DXS. According to available structural data residue H49 is perfectly positioned to abstract a proton from the donor substrate. Mutations in DXS E370 showed that this residue is also essential for catalytic activity. Three-dimensional structure supports its involvement in cofactor deprotonation, the first step in enzymatic thiamin catalysis. Results obtained with H431 mutant enzymes indicate that this residue plays a role contributing to transition state stabilization. Finally, mutants at position D427 also showed a severe specific activity decrease with a reduction of the kcat/KM ratio. A role in binding the substrate and selecting the stereoisomer is proposed for D427. 展开更多
关键词 Active Site 1-Deoxy-D-Xylulose 5-phosphate synthase ISOPRENOID Biosynthesis Kinetic Parameters MEP Pathway Methylerythritol Phosphate MUTAGENESIS
下载PDF
The Isogene 1-Deoxy-D-Xylulose 5-Phosphate Synthase 2 Controls Isoprenoid Profiles, Precursor Pathway Allocation, and Density of Tomato Trichomes 被引量:11
2
作者 Heike Paetzold Stefan Garms +7 位作者 Stefan Bartram Jenny Wieczorek Eva-Maria Uros-Gracia Manuel Rodriguez-Concepcion Wilhelm Boland Dieter Strack Bettina Hause Michael H. Walter 《Molecular Plant》 SCIE CAS CSCD 2010年第5期904-916,共13页
Plant isoprenoids are formed from precursors synthesized by the mevalonate (MVA) pathway in the cytosol or by the methyl-D-erythritol 4-phosphate (MEP) pathway in plastids. Although some exchange of precursors occ... Plant isoprenoids are formed from precursors synthesized by the mevalonate (MVA) pathway in the cytosol or by the methyl-D-erythritol 4-phosphate (MEP) pathway in plastids. Although some exchange of precursors occurs, cytosolic sesquiterpenes are assumed to derive mainly from MVA, while plastidial monoterpenes are produced preferentially from MEP precursors. Additional complexity arises in the first step of the MEP pathway, which is typically catalyzed by two divergent 1-deoxy-D-xylulose 5-phosphate synthase isoforms (DXS1, DXS2). In tomato (Solanum lycopersicum), the SIDXS1 gene is ubiquitously expressed with highest levels during fruit ripening, whereas SIDXS2 transcripts are abundant in only few tissues, including young leaves, petals, and isolated trichomes. Specific down-regulation of SIDXS2 expression was performed by RNA interference in transgenic plants to investigate feedback mechanisms. SIDXS2 down-regulation led to a decrease in the monoterpene β-phellandrene and an increase in two sesquiterpenes in trichomes. Moreover, incorporation of MVA-derived precursors into residual monoterpenes and into sesquiterpenes was elevated as determined by comparison of ^13C to ^12C natural isotope ratios. A compensatory up-regulation of SIDXS1 was not observed. Down-regulated lines also exhibited increased trichome density and showed less damage by leaf-feeding Spodoptera littoralis caterpillars. The results reveal novel, non-redundant roles of DXS2 in modulating isoprenoid metabolism and a pronounced plasticity in isoprenoid precursor allocation. 展开更多
关键词 Isoprenoid biosynthesis methyI-D-erythritol 4-phosphate (MEP) pathway 1-deoxy-D-xylulose 5-phosphate synthase 2 (DXS2) RNA interference (RNAi) TRICHOMES cross-talk feedback regulation GC-C-IRMS.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部