The different interactions between a chemosensor, 1-(naphthalen-2-yl)-3-(6-nitrobenzothiazol-2-yl)-thiourea (1), and F, acetate (AcO-), Cl-, and Br- anions have been investigated theoretically at the B3LYP/6-3...The different interactions between a chemosensor, 1-(naphthalen-2-yl)-3-(6-nitrobenzothiazol-2-yl)-thiourea (1), and F, acetate (AcO-), Cl-, and Br- anions have been investigated theoretically at the B3LYP/6-31+G(d,p) level with the basis set superposition error (BSSE) correction. It was found that the high selectivity of compound 1 for F- can be ascribed to the ability of the anion to deprotonate the N-H fragment of the host sensor, while the chemosensor also has a strong affinity for AcO- by virtue of the formation of a hydrogen-bonded complex. Intramolecular charge transfer (ICT) causes the colorimetric signaling of compound 1 after interaction with F-/AcO. A study of substituent effects suggested that the O/NH- and O/S-substituted derivatives are also expected to be promising candidates for chromogenic F3AcO chemosensors.展开更多
基金supported by the Natural Science Foundation of Inner Mongolia Autonomous Region (2011ZD02)
文摘The different interactions between a chemosensor, 1-(naphthalen-2-yl)-3-(6-nitrobenzothiazol-2-yl)-thiourea (1), and F, acetate (AcO-), Cl-, and Br- anions have been investigated theoretically at the B3LYP/6-31+G(d,p) level with the basis set superposition error (BSSE) correction. It was found that the high selectivity of compound 1 for F- can be ascribed to the ability of the anion to deprotonate the N-H fragment of the host sensor, while the chemosensor also has a strong affinity for AcO- by virtue of the formation of a hydrogen-bonded complex. Intramolecular charge transfer (ICT) causes the colorimetric signaling of compound 1 after interaction with F-/AcO. A study of substituent effects suggested that the O/NH- and O/S-substituted derivatives are also expected to be promising candidates for chromogenic F3AcO chemosensors.