为了更准确的诊断滚动轴承是否发生故障,提出了利用Teager能量算子求LMD分量能量信号,再做其1.5维谱的方法。局部均值分解(Local Mean Decomposition,简称LMD)算法分解得到一组乘积函数分量,每一个分量都可近似看作一个线性平稳的单分...为了更准确的诊断滚动轴承是否发生故障,提出了利用Teager能量算子求LMD分量能量信号,再做其1.5维谱的方法。局部均值分解(Local Mean Decomposition,简称LMD)算法分解得到一组乘积函数分量,每一个分量都可近似看作一个线性平稳的单分量信号。Teager能量算子可以追踪信号瞬态能量,使故障冲击成分突出。1.5维谱具有降低频谱中高斯噪声影响的作用。新的故障诊断方法结合了各方法的优点,能有效地提取滚动轴承故障信号的特征频率及其倍频。通过对实测滚动轴承外圈、滚动体、内圈故障信号的分析,有效地提取了各种故障的特征频率,验证了新方法在滚动轴承故障特征提取中的可靠性。展开更多
滚动轴承出现早期故障时,故障特征十分微弱,伴随严重的噪声干扰导致其故障特征难以识别,针对这一问题,提出了一种总体局部均值分解(Ensemble Local Mean Decomposition,ELMD)和1.5维谱相结合的滚动轴承故障诊断新方法。该方法首先运用E...滚动轴承出现早期故障时,故障特征十分微弱,伴随严重的噪声干扰导致其故障特征难以识别,针对这一问题,提出了一种总体局部均值分解(Ensemble Local Mean Decomposition,ELMD)和1.5维谱相结合的滚动轴承故障诊断新方法。该方法首先运用ELMD对振动信号进行分解,得到一系列乘积函数(product function,PF)分量,然后根据峭度准则以及相关系数准则提取一个包含主要故障信息的PF分量,最后对提取的PF分量进行1.5维谱分析,通过分析谱图中突出成分以确定轴承故障类型。通过仿真信号和工程实验数据分析验证了该方法的有效性。展开更多
文摘为了更准确的诊断滚动轴承是否发生故障,提出了利用Teager能量算子求LMD分量能量信号,再做其1.5维谱的方法。局部均值分解(Local Mean Decomposition,简称LMD)算法分解得到一组乘积函数分量,每一个分量都可近似看作一个线性平稳的单分量信号。Teager能量算子可以追踪信号瞬态能量,使故障冲击成分突出。1.5维谱具有降低频谱中高斯噪声影响的作用。新的故障诊断方法结合了各方法的优点,能有效地提取滚动轴承故障信号的特征频率及其倍频。通过对实测滚动轴承外圈、滚动体、内圈故障信号的分析,有效地提取了各种故障的特征频率,验证了新方法在滚动轴承故障特征提取中的可靠性。
文摘滚动轴承出现早期故障时,故障特征十分微弱,伴随严重的噪声干扰导致其故障特征难以识别,针对这一问题,提出了一种总体局部均值分解(Ensemble Local Mean Decomposition,ELMD)和1.5维谱相结合的滚动轴承故障诊断新方法。该方法首先运用ELMD对振动信号进行分解,得到一系列乘积函数(product function,PF)分量,然后根据峭度准则以及相关系数准则提取一个包含主要故障信息的PF分量,最后对提取的PF分量进行1.5维谱分析,通过分析谱图中突出成分以确定轴承故障类型。通过仿真信号和工程实验数据分析验证了该方法的有效性。