The QTL qTGW3-1 was located on chromosome 3 of rice (Oryza sativa L.) and associated with the 1 000-grain weight (TGW) according to the result of our earlier study. With the objective of fine mapping of this locus...The QTL qTGW3-1 was located on chromosome 3 of rice (Oryza sativa L.) and associated with the 1 000-grain weight (TGW) according to the result of our earlier study. With the objective of fine mapping of this locus, we developed a F2 population consisting of 3 428 plants derived from the cross between TGW-related near isogenic line DL017 (BC3F4 generation of GSL 156×Nipponbare) and the recurrent parent Nipponbare. Using six microsatellites, this QTL was delimited between RM5477 and RM6417. Markers MM 1455 and MM 1456 within this region were used for further mapping of this QTL. Finally, qTGW3-1 was fine-mapped into a 89-kb interval between RM5477 and MM1456, which locates in the BAC clone AC107226 harboring five putative candidate genes.展开更多
1000-grain weight ( TGW) is one ot the three component traits ot the grain yiela in rice (Oryza sativa L). This study was conducted to validate and fine-map qTGWl. 1, a minor QTL for TGW which was previously locat...1000-grain weight ( TGW) is one ot the three component traits ot the grain yiela in rice (Oryza sativa L). This study was conducted to validate and fine-map qTGWl. 1, a minor QTL for TGW which was previously located in a 3.7-Mb region on the long arm of rice chromosome 1. Five sets of near isogenic lines (NILs) were developed from two BC2F4 populations of the indica rice cross Zhenshan 973/Milyang 46 The NIL sets consisted of two homozygous genotypic groups differing in the regions RM11448-RM11522, RM11448-RM11549, RM1232-RM11615, RM11543-RM11554 and RM11569-RM11621, respectively. Four traits, including TGW, grain length, grain width and heading date, were measured. Phenotypic difference between the two genotypic groups in each NIL population was analyzed using SAS procedure GLM. Significant QTL effects were detected on TGW with the Zhenshan 97 allele increasing grain weight by 0.12 g to 0.14 g and explaining 8.30% to 15.19% of the phenotypic variance. Significant effects were also observed for grain length and width, whereas no significant effect was found for heading date. Based on comparison among the five NILs on the segregating regions and the results of QTL analysis, qTGWl. 1 was delimited to a 376.9-kb region flanked by DNA markers Wn28382 and RMl1554. Our results indicate that the effects of minor QTLs could be steadily detected in a highly isogenic background and suggest that such QTLs could be utilized in the breeding of high-yielding rice varieties.展开更多
The purpose of this study is to reveal the effects of historic climate change on rice yield over the middle and lower reaches of the Yangtze River, China, and to better adapt to climate change in the future. This stud...The purpose of this study is to reveal the effects of historic climate change on rice yield over the middle and lower reaches of the Yangtze River, China, and to better adapt to climate change in the future. This study presents the relation of temperature and precipitation and rice components from 1981 to 2003 at 48 early rice stations and 30 middle rice stations. It focuses on an analysis of three stages: flowering, pre-milk, and late milk. The results show that mean maximum temperature and mean daily precipitation at the stages of flowering and pre-milk are most related to early rice yield. Yield change of middle rice is mainly because of mean precipitation change at the flowering stage. Furthermore, percentage of undeveloped grain increases as mean maximum temperature rises at the flowering stage. Over-precipitation in the reproductive stage is a major reason for reduction in yield of early rice. Consecutive rainfall and continuous high temperature can have negative effects on middle rice yield. Global warming would affect middle rice more seriously than early rice.展开更多
Grain weight, one of the major factors determining rice yield, is a typical quantitative trait control ed by multiple genes. With Guangluai 4 as recipient and Nipponbare as donor, a population of 119 chromosome single...Grain weight, one of the major factors determining rice yield, is a typical quantitative trait control ed by multiple genes. With Guangluai 4 as recipient and Nipponbare as donor, a population of 119 chromosome single segment substitution lines had been developed. Correlation analysis between grain weight and grain shape by SPSS revealed that 1 000-grain weight shared extremely significant posi-tive correlation with grain length and length-width ratio, but no significant correlation with grain width and thickness. The QTL analysis of grain weight was carried out using one-way analysis of variance and Dunnett's test. Nineteen stable QTLs re-sponsible for grain weight were identified over two years. Al 19 QTLs were identi-fied on al chromosomes except for chromosome 10 and 12 at a significance level of P≤0.001. Among them, 10 QTLs had a positive effect and were derived from the Nipponbare al ele, the additive effect of these QTLs ranged from 0.49 to 2.74 g, and the contributions of the additive effects ranged from 2.00% to 11.05%. Another 9 QTLs had a negative effect and were al derived from Guangluai 4 al ele, the ad-ditive effect of these QTLs ranged from 0.60 to 2.35 g, and the contributions of the additive effects ranged from 2.40% to 9.84%. The results provide a basis for the fine mapping and gene cloning of novel locus associated with rice grain weight.展开更多
supported by a grant from the National High-Tech R&D Program of China (2014AA10A603, 2014AA10A604);a grant from the Youth Foundation in Sichuan, China (2011JTD0022);the special fund for China Agricultural Researc...supported by a grant from the National High-Tech R&D Program of China (2014AA10A603, 2014AA10A604);a grant from the Youth Foundation in Sichuan, China (2011JTD0022);the special fund for China Agricultural Research System (CARS-01-08);the Provincial Specialized Funds for Innovation Ability Promotion in Sichuan, China (2013GXJS005)展开更多
In order to clarify the impact posed by wheat powdery mildew (Blumeria graminis f. sp. tritici) on the yield and yield components in different epidemic seasons, field trials were conducted in three growing seasons, ...In order to clarify the impact posed by wheat powdery mildew (Blumeria graminis f. sp. tritici) on the yield and yield components in different epidemic seasons, field trials were conducted in three growing seasons, 2009-2010, 2010-2011 and 2011-2012, in Langfang City, Hebei Province, China. The relationships between 1000-kernel weight, crude protein content of grain and yield and disease index (DI), as well as area under disease progress curve (AUDPC) were studied. The models of the percentage of loss of 1000-kernel weight, crude protein content and yield were constructed using DI at critical point (CP) of growth stages (GS) and AUDPC in the three growing seasons, respectively. The CPs for estimating 1 000-kernel weight, crude protein content of grain and yield of wheat caused by powdery mildew were GS 11.1, GS 10.5.3 and GS l 0.5.3, respectively. Models based on DI at CP to estimate the percentage of loss of 1000-kernel weight, crude protein content of grain and yield were better than models based on AUDPC. And models of the percentage of loss of 1000-kernel weight, crude protein content and yield for 2011-2012 season were significant different from these for 2009-2010 and 2010-2011 seasons. These results indicated that besides powdery mildew, weather conditions also had influence on 1 000-kernel weight, crude protein content of grain and yield loss of wheat when powdery mildew occurred.展开更多
To investigate the relationship of milk line position with grain weight and mechanized harvest of summer corn in Huang-Huai-Hai Region, 8 varieties (A, B, C, D, E, F, G, H) with large planting areas were selected to...To investigate the relationship of milk line position with grain weight and mechanized harvest of summer corn in Huang-Huai-Hai Region, 8 varieties (A, B, C, D, E, F, G, H) with large planting areas were selected to measure the grain filling rate, 100-grain weight, water content and milk line position, and the correlation was analyzed. Results showed that when the milk line position was 90%, the grain filling of all the 8 varieties finished and 100-grain weight reached the highest value, which was 43.02 g. The grain filling time was in positive correlation with 100-grain weight. However, when the milk line position completely disappeared, the 100-grain weight was reduced by 8.66% at most. There was no significant difference during the periods of grain weight rising, but in the periods of grain weight falling, the traits of D, E, H were significantly different with the other varieties, and water loss rate of C and A showed significant difference with the other six varieties. The water content of grain was negatively correlated with milk line position. When the milk line percentage was 90% , the grain water content was less than 30% . The key factor influencing the mechanized harvest of summer corn is harvesting time, rather than the varieties. Moreover, milk-line position of 90% is the best time for harvest; if the harvest is too late, the yield will be reduced with varying degrees.展开更多
基金supported by the National Basic Research Program of China (2010CB129504)the National Key Technologies R&D Program of China (2009BADA2B01)the 948 Project of MOA, China (2011-G2B)
文摘The QTL qTGW3-1 was located on chromosome 3 of rice (Oryza sativa L.) and associated with the 1 000-grain weight (TGW) according to the result of our earlier study. With the objective of fine mapping of this locus, we developed a F2 population consisting of 3 428 plants derived from the cross between TGW-related near isogenic line DL017 (BC3F4 generation of GSL 156×Nipponbare) and the recurrent parent Nipponbare. Using six microsatellites, this QTL was delimited between RM5477 and RM6417. Markers MM 1455 and MM 1456 within this region were used for further mapping of this QTL. Finally, qTGW3-1 was fine-mapped into a 89-kb interval between RM5477 and MM1456, which locates in the BAC clone AC107226 harboring five putative candidate genes.
基金supported by the National Science Foundation of China (Grant No. 31221004)a research grant of the China National Rice Research Institute (Grant No. 2012RG002-3)
文摘1000-grain weight ( TGW) is one ot the three component traits ot the grain yiela in rice (Oryza sativa L). This study was conducted to validate and fine-map qTGWl. 1, a minor QTL for TGW which was previously located in a 3.7-Mb region on the long arm of rice chromosome 1. Five sets of near isogenic lines (NILs) were developed from two BC2F4 populations of the indica rice cross Zhenshan 973/Milyang 46 The NIL sets consisted of two homozygous genotypic groups differing in the regions RM11448-RM11522, RM11448-RM11549, RM1232-RM11615, RM11543-RM11554 and RM11569-RM11621, respectively. Four traits, including TGW, grain length, grain width and heading date, were measured. Phenotypic difference between the two genotypic groups in each NIL population was analyzed using SAS procedure GLM. Significant QTL effects were detected on TGW with the Zhenshan 97 allele increasing grain weight by 0.12 g to 0.14 g and explaining 8.30% to 15.19% of the phenotypic variance. Significant effects were also observed for grain length and width, whereas no significant effect was found for heading date. Based on comparison among the five NILs on the segregating regions and the results of QTL analysis, qTGWl. 1 was delimited to a 376.9-kb region flanked by DNA markers Wn28382 and RMl1554. Our results indicate that the effects of minor QTLs could be steadily detected in a highly isogenic background and suggest that such QTLs could be utilized in the breeding of high-yielding rice varieties.
文摘The purpose of this study is to reveal the effects of historic climate change on rice yield over the middle and lower reaches of the Yangtze River, China, and to better adapt to climate change in the future. This study presents the relation of temperature and precipitation and rice components from 1981 to 2003 at 48 early rice stations and 30 middle rice stations. It focuses on an analysis of three stages: flowering, pre-milk, and late milk. The results show that mean maximum temperature and mean daily precipitation at the stages of flowering and pre-milk are most related to early rice yield. Yield change of middle rice is mainly because of mean precipitation change at the flowering stage. Furthermore, percentage of undeveloped grain increases as mean maximum temperature rises at the flowering stage. Over-precipitation in the reproductive stage is a major reason for reduction in yield of early rice. Consecutive rainfall and continuous high temperature can have negative effects on middle rice yield. Global warming would affect middle rice more seriously than early rice.
基金Supported by National Natural Science Foundation of China(31101131)National Key Technology Research and Development Program(2011BAD16B03)+1 种基金Agricultural Science Independent Innovation Foundation of Jiangsu Province[CX(12)1003]Key Technology Research and Development Program of Jiangsu Province(BE2012309)~~
文摘Grain weight, one of the major factors determining rice yield, is a typical quantitative trait control ed by multiple genes. With Guangluai 4 as recipient and Nipponbare as donor, a population of 119 chromosome single segment substitution lines had been developed. Correlation analysis between grain weight and grain shape by SPSS revealed that 1 000-grain weight shared extremely significant posi-tive correlation with grain length and length-width ratio, but no significant correlation with grain width and thickness. The QTL analysis of grain weight was carried out using one-way analysis of variance and Dunnett's test. Nineteen stable QTLs re-sponsible for grain weight were identified over two years. Al 19 QTLs were identi-fied on al chromosomes except for chromosome 10 and 12 at a significance level of P≤0.001. Among them, 10 QTLs had a positive effect and were derived from the Nipponbare al ele, the additive effect of these QTLs ranged from 0.49 to 2.74 g, and the contributions of the additive effects ranged from 2.00% to 11.05%. Another 9 QTLs had a negative effect and were al derived from Guangluai 4 al ele, the ad-ditive effect of these QTLs ranged from 0.60 to 2.35 g, and the contributions of the additive effects ranged from 2.40% to 9.84%. The results provide a basis for the fine mapping and gene cloning of novel locus associated with rice grain weight.
基金supported by a grant from the National High-Tech R&D Program of China (2014AA10A603, 2014AA10A604)a grant from the Youth Foundation in Sichuan, China (2011JTD0022)+1 种基金the special fund for China Agricultural Research System (CARS-01-08)the Provincial Specialized Funds for Innovation Ability Promotion in Sichuan, China (2013GXJS005)
文摘supported by a grant from the National High-Tech R&D Program of China (2014AA10A603, 2014AA10A604);a grant from the Youth Foundation in Sichuan, China (2011JTD0022);the special fund for China Agricultural Research System (CARS-01-08);the Provincial Specialized Funds for Innovation Ability Promotion in Sichuan, China (2013GXJS005)
基金financially supported by the National Basic Research Program of China(2010CB951503)the Special Fund for Agro-Scientific Research in the Public Interest,China(201303016)the National Key Technologies R&D Program of China(2012BAD19B04)
文摘In order to clarify the impact posed by wheat powdery mildew (Blumeria graminis f. sp. tritici) on the yield and yield components in different epidemic seasons, field trials were conducted in three growing seasons, 2009-2010, 2010-2011 and 2011-2012, in Langfang City, Hebei Province, China. The relationships between 1000-kernel weight, crude protein content of grain and yield and disease index (DI), as well as area under disease progress curve (AUDPC) were studied. The models of the percentage of loss of 1000-kernel weight, crude protein content and yield were constructed using DI at critical point (CP) of growth stages (GS) and AUDPC in the three growing seasons, respectively. The CPs for estimating 1 000-kernel weight, crude protein content of grain and yield of wheat caused by powdery mildew were GS 11.1, GS 10.5.3 and GS l 0.5.3, respectively. Models based on DI at CP to estimate the percentage of loss of 1000-kernel weight, crude protein content of grain and yield were better than models based on AUDPC. And models of the percentage of loss of 1000-kernel weight, crude protein content and yield for 2011-2012 season were significant different from these for 2009-2010 and 2010-2011 seasons. These results indicated that besides powdery mildew, weather conditions also had influence on 1 000-kernel weight, crude protein content of grain and yield loss of wheat when powdery mildew occurred.
基金Supported by the"Corn Industry Technology System of Henan Province-Shangqiu Comprehensive Test Station"of the Special Fund for Modern Agricultural Technology System of Henan Province(Z2015-02-02)the"Research and Application of Full Mechanization and Supporting High-Yield Cultivation Technology of Summer Corn"of the Key Science and Technology Project of Shangqiu City(153026)~~
文摘To investigate the relationship of milk line position with grain weight and mechanized harvest of summer corn in Huang-Huai-Hai Region, 8 varieties (A, B, C, D, E, F, G, H) with large planting areas were selected to measure the grain filling rate, 100-grain weight, water content and milk line position, and the correlation was analyzed. Results showed that when the milk line position was 90%, the grain filling of all the 8 varieties finished and 100-grain weight reached the highest value, which was 43.02 g. The grain filling time was in positive correlation with 100-grain weight. However, when the milk line position completely disappeared, the 100-grain weight was reduced by 8.66% at most. There was no significant difference during the periods of grain weight rising, but in the periods of grain weight falling, the traits of D, E, H were significantly different with the other varieties, and water loss rate of C and A showed significant difference with the other six varieties. The water content of grain was negatively correlated with milk line position. When the milk line percentage was 90% , the grain water content was less than 30% . The key factor influencing the mechanized harvest of summer corn is harvesting time, rather than the varieties. Moreover, milk-line position of 90% is the best time for harvest; if the harvest is too late, the yield will be reduced with varying degrees.