期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
In Vitro Characterizations of PLLA/β-TCP Porous Matrix Materials and RMSC-PLLA-β-TCP Composite Scaffolds 被引量:3
1
作者 DaliZHOU WeizhongYANG +4 位作者 GuangfuYIN ChangqiongZHENG YunZHANG HuaiqingCHEN RuiCHEN 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第3期248-252,共5页
To develop a novel degradable poly (L-lactic acid)/β-tricalcium phosphate (PLLA/β-TCP) bioactive materials for bone tissueengineering, β-TCP powder was produced by a new wet process. Porous scaffolds were prepared ... To develop a novel degradable poly (L-lactic acid)/β-tricalcium phosphate (PLLA/β-TCP) bioactive materials for bone tissueengineering, β-TCP powder was produced by a new wet process. Porous scaffolds were prepared by three steps, i.e. solventcasting, compression molding and leaching stage. Factors influencing the compressive strength and the degradation behaviorof the porous scaffold, e.g. weight fraction of pore forming agent-sodium chloride (NaCl), weight ratio of PLLA: β-TCP,the particle size of β-TCP and the porosity, were discussed in details. Rat marrow stromal cells (RMSC) were incorporatedinto the composite by tissue engineering approach. Biological and osteogenesis potential of the composite scaffold weredetermined with MTT assay, alkaline phosphatase (ALP) activity and bone osteocalcin (OCN) content evaluation. Resultsshow that PLLA/β-TCP bioactive porous scaffold has good mechanical and pore structure with adjustable compressive strengthneeded for surgery. RMSCs seeding on porous PLLA/β-TCP composite behaves good seeding efficacy, biocompatibility andosteoinductive potential. Osteoprogenitor cells could well penetrate into the material matrix and begin cell proliferation andosteogenic differentiation. Osseous matrix could be formed on the surface of the composite after culturing in vitro. It isexpected that the PLLA/β-TCP porous composites are promising scaffolds for bone tissue engineering in prosthesis surgery. 展开更多
关键词 β-tricalcium phosphate (β-tcp) Poly (L-lactic acid)(PLLA) Rat marrow stromal cells (RMSC) OSTEOGENESIS OSTEOINDUCTION
下载PDF
Osteogenesis Capacity of a Novel BMP/α-TCP Bioactive Composite Bone Cement
2
作者 杨为中 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第2期30-34,共0页
To improve the osteogenesis ability of a-tricalcium phosphate (α-TCP) bone cement, a novel BMP/ α-TCP composite bone cement was prepared. By measuring the setting time and compressive strength, the hydration charact... To improve the osteogenesis ability of a-tricalcium phosphate (α-TCP) bone cement, a novel BMP/ α-TCP composite bone cement was prepared. By measuring the setting time and compressive strength, the hydration characteristic of bone cement was evaluated. Animal experiments including histological observation, radiographic investigation as well as digital image analyses reveal the difference of osteogenesis ability among BMP,a-TCP bone cement and BMP/α-TCP composite bone cement. Results show that α-TCP bone cement possesses excellent hydration and setting properties as well as high mechanical property. Comparison experiments show that BMP/ α-TCP composite bone cement has a stronger osteogenesis ability. The gross observation of the implant site does not exhibit any inflammation or necrosis. Histological analyses reveal that the material has good osteointegration with host bone, and new bone formation is detected within the materials, which are degrading. Strong osteogenesis ability of the composite is due to not only the excellent osteoconductive potential but also the osteoinductive potential contributed by active BMP releasing and the material degradation. Large skull defect could be well-healed by filling BMP/α-TCP composite bone cement. This novel material proves itself to be an absorbable and bioactive bone cement with an osteogenesis ability. Key words α-tricalcium phosphate (α-TCP) - bone morphogenetic proteins (BMP) - bone cement - osteogenesis - osteoinductivity - bone tissue engineering Funded by 863 Hi-Tech Research and Development Program of China (2002AA326080) and the Fund for Outstanding Young Teacher of the Education Ministry of China(2002123) 展开更多
关键词 α-tricalcium phosphate -tcp) bone morphogenetic proteins (BMP) bone cement OSTEOGENESIS OSTEOINDUCTIVITY bone tissue engineering
全文增补中
3D-printed strontium-incorporatedβ-TCP bioceramic triply periodic minimal surface scaffolds with simultaneous high porosity,enhanced strength,and excellent bioactivity 被引量:1
3
作者 Yanbo Shan Yang Bai +8 位作者 Shuo Yang Qing Zhou Gang Wang Biao Zhu Yiwen Zhou Wencan Fang Ning Wen Rujie He Lisheng Zhao 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第9期1671-1684,共14页
In bone tissue engineering,scaffolds with excellent mechanical and bioactive properties play prominent roles in space maintaining and bone regeneration,attracting increasingly interests in clinical practice.In this st... In bone tissue engineering,scaffolds with excellent mechanical and bioactive properties play prominent roles in space maintaining and bone regeneration,attracting increasingly interests in clinical practice.In this study,strontium-incorporatedβ-tricalcium phosphate(β-TCP),named Sr-TCP,bioceramic triply periodic minimal surface(TPMS)structured scaffolds were successfully fabricated by digital light processing(DLP)-based 3D printing technique,achieving high porosity,enhanced strength,and excellent bioactivity.The Sr-TCP scaffolds were first characterized by element distribution,macrostructure and microstructure,and mechanical properties.Notably,the compressive strength of the scaffolds reached 1.44 MPa with porosity of 80%,bringing a great mechanical breakthrough to porous scaffolds.Furthermore,the Sr-TCP scaffolds also facilitated osteogenic differentiation of mouse osteoblastic cell line(MC3T3-E1)cells in both gene and protein aspects,verified by alkaline phosphatase(ALP)activity and polymerase chain reaction(PCR)assays.Overall,the 3D-printed Sr-TCP bioceramic TPMS structured scaffolds obtained high porosity,boosted strength,and superior bioactivity at the same time,serving as a promising approach for bone regeneration. 展开更多
关键词 STRONTIUM β-tricalcium phosphate(β-tcp) digital light processing(DLP) 3D printing triply periodic minimal surface(TPMS) bone scaffold
原文传递
Fabrication and Characterization of Ca-Mg-P Containing Coating on Pure Magnesium 被引量:3
4
作者 Yanjin Lu Lili Tan +3 位作者 Honglia. ng Xiang Bingchun Zhang Ke Yang Yangde Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2012年第7期636-641,共6页
A biodegradable Ca-P coating mainly consisting of β-tricalcium phosphate (β-TCP) was fabricated on pure magnesium via the chemical deposition in a simulated Hank’s solution. The method significantly accelerated t... A biodegradable Ca-P coating mainly consisting of β-tricalcium phosphate (β-TCP) was fabricated on pure magnesium via the chemical deposition in a simulated Hank’s solution. The method significantly accelerated the coating formation on magnesium. Moreover, the morphology, phase/chemical composition, the coating formation mechanism as well as degradation behavior in phosphate buffered saline (PBS) solution were in- vestigated. Scanning electron microscopy (SEM) images showed that the coating had three layers and X-ray diffraction (XRD) patterns showed that the coating mainly contained Ca3(PO4)2 and (Ca,Mg)3(PO4)2. Elec- trochemical test showed that the corrosion current density (Icorr) of the coated Mg was decreased by about one order of magnitude as compared to that of pure magnesium. The immersion test indicated that the coating could obviously reduce the degradation rate. 展开更多
关键词 MAGNESIUM β-tricalcium phosphate (β-tcp BIODEGRADATION Chemicaldeposition
原文传递
Conversion of natural marine skeletons as scaffolds for bone tissue engineering 被引量:1
5
作者 Xing ZHANG Kenneth S. VECCHIO 《Frontiers of Materials Science》 SCIE CSCD 2013年第2期103-117,共15页
Marine CaCO3 skeletons have tailored architectures created by nature, which give them structural support and other functions. For example, seashells have dense lamellar structures, while coral, cuttlebone and sea urch... Marine CaCO3 skeletons have tailored architectures created by nature, which give them structural support and other functions. For example, seashells have dense lamellar structures, while coral, cuttlebone and sea urchin spines have interconnected porous structures. In our experiments, seashells, coral and cuttlebone were hydrothermaily converted to hydroxyapatite (HAP), and sea urchin spines were converted to Mg-substituted tricalcium phosphate, while maintaining their original structures. Partially converted shell samples have mechanical strength, which is close to that of compact human bone. After implantation of converted shell and spine samples in rat femoral defects for 6 weeks, there was newly formed bone growth up to and around the implants. Some new bone was found to migrate through the pores of converted spine samples and grow inward. These results show good bioactivity and osteoconductivity of the implants, indicating the converted shell and spine samples can be used as bone defect fillers. The interconnected porous HAP scaffolds from converted coral or cuttlebone that have pore size larger than 100μm likely support infiltration of bone cells and vessels, and finally encourage new bone ingrowth. 展开更多
关键词 SEASHELL sea urchin spine CORAL CUTTLEBONE hydrothermal conversion hydroxyapatite (HAP) β-tricalcium phosphate -tcp)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部