Power consumption is the energy source of the impact on fibers or pulp during low-consistency(LC)pulp refining,and the strength of refining affects refining quality and efficiency.The pulp properties,operating paramet...Power consumption is the energy source of the impact on fibers or pulp during low-consistency(LC)pulp refining,and the strength of refining affects refining quality and efficiency.The pulp properties,operating parameters,and bar parameters of the refiner plates are important parameters affecting refining efficiency,which can be defined as the ratio of net to total refining power.In this study,LC refining trials for pulps with different consistencies and fiber lengths were conducted using five isometric straightbar plates with different bar angles to explore the influences of the plate bar angle and pulp properties on the no-load power,impact capacity on fibers and refining efficiency.It was found that the no-load power of the LC refining process decreased with an increase in the plate bar angle while increased when pulp with higher consistency was refined under the same refining conditions.However,the effect of pulp consistency on the no-load power can be neglected when refining is conducted using plates with larger bar angles.Meanwhile,a critical bar angle for straight-bar plates in LC refining may exist,which has the strongest impact on the pulp and highest refining efficiency under the same refining conditions.In addition,the impact capacity of the plate on the pulp and refining efficiency in LC refining can be enhanced by appropriately increasing the pulp consistency and average fiber length when the bar angle of the refiner plate with a sector angle of 40°is less than 30°.Therefore,the efficiency and power consumption of the LC refining process can be adjusted by optimizing the pulp consistency and bar parameters of the refining plates.展开更多
From the mixed variational principle, by the selection of the state variables and its dual variables, the Hamiltonian canonical equation for the dynamic analysis of shear deformable antisymmetric angle-ply laminated p...From the mixed variational principle, by the selection of the state variables and its dual variables, the Hamiltonian canonical equation for the dynamic analysis of shear deformable antisymmetric angle-ply laminated plates is derived, leading to the mathematical frame of symplectic geometry and algorithms, and the exact solution for the arbitrary boundary conditions is also derived by the adjoint orthonormalized symplectic expansion method. Numerical results are presented with the emphasis on the effects of length/thickness ratio, arbitrary boundary conditions, degrees of anisotropy, number of layers, ply-angles and the corrected coefficients of transverse shear.展开更多
This article makes the first attempt in assessing the influence of active constrained layer damping(ACLD)treatment towards precise control of frequency responses of functionally graded skew-magneto-electroelastic(FGSM...This article makes the first attempt in assessing the influence of active constrained layer damping(ACLD)treatment towards precise control of frequency responses of functionally graded skew-magneto-electroelastic(FGSMEE)plates by employing finite element methods.The materials are functionally graded across the thickness of the plate in terms of modest power-law distributions.The principal equations of motion of FGSMEE are derived via Hamilton’s principle and solved using condensation technique.The effect of ACLD patches are modelled by following the complex modulus approach(CMA).Additionally,distinctive emphasis is laid to evaluate the influence of geometrical skewness on the attenuation capabilities of the plate.The accuracy of the current analysis is corroborated with comparison of previous researches of similar kind.Additionally,a complete parametric study is directed to understand the combined impacts of various factors like coupling fields,patch location,fiber orientation of piezoelectric patch in association with skew angle and power-law index.展开更多
For plane singly-connected domains with insulating boundary and four point-sized contacts, C<sub>0</sub> …C<sub>3</sub>, van der Pauw derived a famous equation relating the two trans-...For plane singly-connected domains with insulating boundary and four point-sized contacts, C<sub>0</sub> …C<sub>3</sub>, van der Pauw derived a famous equation relating the two trans-resistances R<sub>01,23</sub>, R<sub>12,30</sub> with the sheet resistance without any other parameters. If the domain has one hole van der Pauw’s equation becomes an inequality with upper and lower bounds, the envelopes. This was conjectured by Szymański et al. in 2013, and only recently it was proven by Miyoshi et al. with elaborate mathematical tools. The present article gives new proofs closer to physical intuition and partly with simpler mathematics. It relies heavily on conformal transformation and it expresses for the first time the trans-resistances and the lower envelope in terms of Jacobi functions, elliptic integrals, and the modular lambda elliptic function. New simple formulae for the asymptotic limit of a very large hole are also given.展开更多
基金funding from the National Natural Science Foundation of China (Grant No. 50745048)Shaanxi Provincial Key Research and Development Project (Grant No. 2020 GY-105)Natural Science Basic Research Program of Shaanxi (Grant No. 2023-JC-QN-0154)。
文摘Power consumption is the energy source of the impact on fibers or pulp during low-consistency(LC)pulp refining,and the strength of refining affects refining quality and efficiency.The pulp properties,operating parameters,and bar parameters of the refiner plates are important parameters affecting refining efficiency,which can be defined as the ratio of net to total refining power.In this study,LC refining trials for pulps with different consistencies and fiber lengths were conducted using five isometric straightbar plates with different bar angles to explore the influences of the plate bar angle and pulp properties on the no-load power,impact capacity on fibers and refining efficiency.It was found that the no-load power of the LC refining process decreased with an increase in the plate bar angle while increased when pulp with higher consistency was refined under the same refining conditions.However,the effect of pulp consistency on the no-load power can be neglected when refining is conducted using plates with larger bar angles.Meanwhile,a critical bar angle for straight-bar plates in LC refining may exist,which has the strongest impact on the pulp and highest refining efficiency under the same refining conditions.In addition,the impact capacity of the plate on the pulp and refining efficiency in LC refining can be enhanced by appropriately increasing the pulp consistency and average fiber length when the bar angle of the refiner plate with a sector angle of 40°is less than 30°.Therefore,the efficiency and power consumption of the LC refining process can be adjusted by optimizing the pulp consistency and bar parameters of the refining plates.
文摘From the mixed variational principle, by the selection of the state variables and its dual variables, the Hamiltonian canonical equation for the dynamic analysis of shear deformable antisymmetric angle-ply laminated plates is derived, leading to the mathematical frame of symplectic geometry and algorithms, and the exact solution for the arbitrary boundary conditions is also derived by the adjoint orthonormalized symplectic expansion method. Numerical results are presented with the emphasis on the effects of length/thickness ratio, arbitrary boundary conditions, degrees of anisotropy, number of layers, ply-angles and the corrected coefficients of transverse shear.
文摘This article makes the first attempt in assessing the influence of active constrained layer damping(ACLD)treatment towards precise control of frequency responses of functionally graded skew-magneto-electroelastic(FGSMEE)plates by employing finite element methods.The materials are functionally graded across the thickness of the plate in terms of modest power-law distributions.The principal equations of motion of FGSMEE are derived via Hamilton’s principle and solved using condensation technique.The effect of ACLD patches are modelled by following the complex modulus approach(CMA).Additionally,distinctive emphasis is laid to evaluate the influence of geometrical skewness on the attenuation capabilities of the plate.The accuracy of the current analysis is corroborated with comparison of previous researches of similar kind.Additionally,a complete parametric study is directed to understand the combined impacts of various factors like coupling fields,patch location,fiber orientation of piezoelectric patch in association with skew angle and power-law index.
文摘For plane singly-connected domains with insulating boundary and four point-sized contacts, C<sub>0</sub> …C<sub>3</sub>, van der Pauw derived a famous equation relating the two trans-resistances R<sub>01,23</sub>, R<sub>12,30</sub> with the sheet resistance without any other parameters. If the domain has one hole van der Pauw’s equation becomes an inequality with upper and lower bounds, the envelopes. This was conjectured by Szymański et al. in 2013, and only recently it was proven by Miyoshi et al. with elaborate mathematical tools. The present article gives new proofs closer to physical intuition and partly with simpler mathematics. It relies heavily on conformal transformation and it expresses for the first time the trans-resistances and the lower envelope in terms of Jacobi functions, elliptic integrals, and the modular lambda elliptic function. New simple formulae for the asymptotic limit of a very large hole are also given.