BACKGROUND End-stage liver disease is a global health complication with high prevalence and limited treatment options.Cell-based therapies using mesenchymal stem cells(MSCs)emerged as an alternative approach to suppor...BACKGROUND End-stage liver disease is a global health complication with high prevalence and limited treatment options.Cell-based therapies using mesenchymal stem cells(MSCs)emerged as an alternative approach to support hepatic regeneration.In vitro preconditioning strategies have been employed to strengthen the regenerative and differentiation potential of MSCs towards hepatic lineage.Chemical compounds of the triterpene class;glycyrrhizic acid(GA)and 18β-glycyrrhetinic acid(GT)possess diverse therapeutic properties including hepatoprotection and anti-fibrosis characteristics.They are capable of modulating several signaling pathways that are crucial in hepatic regeneration.Preconditioning with hepato-protective triterpenes may stimulate MSC fate transition towards hepatocytes.AIM To explore the effect of GA and GT on hepatic differentiation of human umbilical cord-MSCs(hUC-MSCs).METHODS hUC-MSCs were isolated and characterized phenotypically by flow cytometry and immunocytochemistry for the expression of MSC-associated surface molecules.Isolated cells were treated with GA,GT,and their combination for 24 h and then analyzed at three time points;day 7,14,and 21.qRT-PCR was performed for the expression of hepatic genes.Expression of hepatic proteins was analyzed by immunocytochemistry at day 21.Periodic acid Schiff staining was performed to determine the functional ability of treated cells.RESULTS The fusiform-shaped morphology of MSCs in the treatment groups in comparison with the untreated control,eventually progressed towards the polygonal morphology of hepatocytes with the passage of time.The temporal transcriptional profile of preconditioned MSCs displayed significant expression of hepatic genes with increasing time of differentiation.Preconditioned cells showed positive expression of hepatocyte-specific proteins.The results were further corroborated by positive periodic acid Schiff staining,indicating the presence of glycogen in their cytoplasm.Moreover,bi-nucleated cells,which is the typical feature of hepatocytes,were also seen in the preconditioned cells.CONCLUSION Preconditioning with glycyrrhizic acid,18β-glycyrrhetinic acid and their combination,successfully differentiates hUC-MSCs into hepatic-like cells.These MSCs may serve as a better therapeutic option for degenerative liver diseases in future.展开更多
BACKGROUND Gastric cancer(GC)is a common gastrointestinal malignancy worldwide.Based on cancer-related mortality,the current prevention and treatment strategies for GC still show poor clinical results.Therefore,it is ...BACKGROUND Gastric cancer(GC)is a common gastrointestinal malignancy worldwide.Based on cancer-related mortality,the current prevention and treatment strategies for GC still show poor clinical results.Therefore,it is important to find effective drug treatment targets.AIM To explore the molecular mechanism of 18β-glycyrrhetinic acid(18β-GRA)regulating the miR-345-5p/TGM2 signaling pathway to inhibit the proliferation of GC cells.METHODS CCK-8 assay was used to determine the effect of 18β-GRA on the survival rate of GES-1 cells and AGS and HGC-27 cells.Cell cycle and apoptosis were detected by flow cytometry,cell migration was detected by a wound healing assay,the effect of 18β-GRA on subcutaneous tumor growth in BALB/c nude mice was investigated,and the cell autophagy level was determined by MDC staining.TMT proteomic analysis was used to detect the differentially expressed autophagy-related proteins in GC cells after 18β-GRA intervention,and then the protein-protein interaction was predicted using STRING(https://string-db.org/).MicroRNAs(miRNAs)transcriptome analysis was used to detect the miRNA differential expression profile,and use miRBase(https://www.mirbase/)and TargetScan(https://www.targetscan.org/)to predict the miRNA and complementary binding sites.Quantitative real-time polymerase chain reaction was used to detect the expression level of miRNA in 18β-GRA treated cells,and western blot was used to detect the expression of autophagy related proteins.Finally,the effect of miR-345-5p on GC cells was verified by mir-345-5p overexpression.RESULTS 18β-GRA could inhibit GC cells viability,promote cell apoptosis,block cell cycle,reduce cell wound healing ability,and inhibit the GC cells growth in vivo.MDC staining results showed that 18β-GRA could promote autophagy in GC cells.By TMT proteomic analysis and miRNAs transcriptome analysis,it was concluded that 18β-GRA could down-regulate TGM2 expression and up-regulate miR-345-5p expression in GC cells.Subsequently,we verified that TGM2 is the target of miR-345-5p,and that overexpression of miR-345-5p significantly inhibited the protein expression level of TGM2.Western blot showed that the expression of autophagy-related proteins of TGM2 and p62 was significantly reduced,and LC3II,ULK1 and AMPK expression was significantly increased in GC cells treated with 18β-GRA.Overexpression of miR-345-5p not only inhibited the expression of TGM2,but also inhibited the proliferation of GC cells by promoting cell apoptosis and arresting cell cycle.CONCLUSION 18β-GRA inhibits the proliferation of GC cells and promotes autophagy by regulating the miR-345-5p/TGM2 signaling pathway.展开更多
Cisplatin (CP) , a highly effective and widely used chemotherapeutic agent, has a major limitation for its nephrotoxicity. We recently identified a novel strategy for attenuating its nephrotoxicity in chemotherapy b...Cisplatin (CP) , a highly effective and widely used chemotherapeutic agent, has a major limitation for its nephrotoxicity. We recently identified a novel strategy for attenuating its nephrotoxicity in chemotherapy by an ef- fective adjuvant via epigenetic modification through targeting Histone deacetylase 2 (HDAC2). Glycyrrhizic acid (GA) ,a major active component of Licorice, was described here for its new application. Molecular docking and Surface Plasmon resonance (SPR) assay firstly reported that 18βGA, GA metabolite in vivo, could directly bind to HDAC2 and prevent HDAC2 activation. The effects and mechanisms of GA and its major metabolite 18βGA were assessed in CP-induced acute kidney injury (AKI) in C57BL/6 mice, and in CP-treated HK-2 and mTEC cells lines. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and flow cytometry (FCM) results confirmed that GA and 18βGA could inhibit apoptosis of renal tubular epithelial cells induced by CP in vivo and in vitro. Western blot and immunofluorescence results demonstrated that the expression of bone morphogenetic protein- 7 (BMP-7) , a protective molecule in renal inflammation, was clearly induced by 18βGA in AKI models while siR- NA BMP-7 could reduce the inhibitory effect of 18βGA on apoptosis. Results of current study indicated that 18βGA inhibited apoptosis of renal tubular epithelial cells via enhancing level of BMP-7 epigenetically through targeting HDAC2, therefore protecting against CP-induced AKI. These available evidence, which led to an improved under- standing of molecular recognition, suggested that 18βGA could serve as a potential clinical adjuvant in chemothera-展开更多
BACKGROUND Gastric cancer(GC)is one of the most common cancer types worldwide,and its prevention and treatment methods have garnered much attention.As the active ingredient of licorice,18β-glycyrrhetinic acid(18β-GR...BACKGROUND Gastric cancer(GC)is one of the most common cancer types worldwide,and its prevention and treatment methods have garnered much attention.As the active ingredient of licorice,18β-glycyrrhetinic acid(18β-GRA)has a variety of pharmacological effects.The aim of this study was to explore the effective target of 18β-GRA in the treatment of GC,in order to provide effective ideas for the clinical prevention and treatment of GC.AIM To investigate the mechanism of 18β-GRA in inhibiting cell proliferation and promoting autophagy flux in GC cells.METHODS Whole transcriptomic analyses were used to analyze and screen differentially expressed microRNAs(miRNAs)in GC cells after 18β-GRA intervention.Lentivirus-transfected GC cells and the Cell Counting Kit-8 were used to detect cell proliferation ability,cell colony formation ability was detected by the clone formation assay,and flow cytometry was used to detect the cell cycle and apoptosis.A nude mouse transplantation tumor model of GC cells was constructed to verify the effect of miR-328-3p overexpression on the tumorigenicity of GC cells.Tumor tissue morphology was observed by hematoxylin and eosin staining,and microtubule-associated protein light chain 3(LC3)expression was detected by immunohistochemistry.TransmiR,STRING,and miRWalk databases were used to predict the relationship between miR-328-3p and signal transducer and activator of transcription 3(STAT3)-related information.Expression of STAT3 mRNA and miR-328-3p was detected by quantitative polymerase chain reaction(qPCR)and the expression levels of STAT3,phosphorylated STAT3(p-STAT3),and LC3 were detected by western blot analysis.The targeted relationship between miR-328-3p and STAT3 was detected using the dual-luciferase reporter gene system.AGS cells were infected with monomeric red fluorescent protein-green fluorescent protein-LC3 adenovirus double label.LC3 was labeled and autophagy flow was observed under a confocal laser microscope.RESULTS The expression of miR-328-3p was significantly upregulated after 18β-GRA intervention in AGS cells(P=4.51E-06).Overexpression of miR-328-3p inhibited GC cell proliferation and colony formation ability,arrested the cell cycle in the G0/G1 phase,promoted cell apoptosis,and inhibited the growth of subcutaneous tumors in BALB/c nude mice(P<0.01).No obvious necrosis was observed in the tumor tissue in the negative control group(no drug intervention or lentivirus transfection)and vector group(the blank vector for lentivirus transfection),and more cells were loose and necrotic in the miR-328-3p group.Bioinformatics tools predicted that miR-328-3p has a targeting relationship with STAT3,and STAT3 was closely related to autophagy markers such as p62.After overexpressing miR-328-3p,the expression level of STAT3 mRNA was significantly decreased(P<0.01)and p-STAT3 was downregulated(P<0.05).The dual-luciferase reporter gene assay showed that the luciferase activity of miR-328-3p and STAT33’untranslated regions of the wild-type reporter vector group was significantly decreased(P<0.001).Overexpressed miR-328-3p combined with bafilomycin A1(Baf A1)was used to detect the expression of LC3 II.Compared with the vector group,the expression level of LC3 II in the overexpressed miR-328-3p group was downregulated(P<0.05),and compared with the Baf A1 group,the expression level of LC3 II in the overexpressed miR-328-3p+Baf A1 group was upregulated(P<0.01).The expression of LC3 II was detected after intervention of 18β-GRA in GC cells,and the results were consistent with the results of miR-328-3p overexpression(P<0.05).Additional studies showed that 18β-GRA promoted autophagy flow by promoting autophagosome synthesis(P<0.001).qPCR showed that the expression of STAT3 mRNA was downregulated after drug intervention(P<0.05).Western blot analysis showed that the expression levels of STAT3 and p-STAT3 were significantly downregulated after drug intervention(P<0.05).CONCLUSION 18β-GRA promotes the synthesis of autophagosomes and inhibits GC cell proliferation by regulating the miR-328-3p/STAT3 signaling pathway.展开更多
Objective To search for the microorganisms which have the high selectivity of hydrolyzing glycyrrhizic acid(GL) into 18β-glycyrrhetinic acid-3-O-β-D-glucuronide(GAMG) without glycyrrhetinic acid(GA) byproduct.Method...Objective To search for the microorganisms which have the high selectivity of hydrolyzing glycyrrhizic acid(GL) into 18β-glycyrrhetinic acid-3-O-β-D-glucuronide(GAMG) without glycyrrhetinic acid(GA) byproduct.Methods GL was biotransformed by Aspergillus sp.,the products were separated by chromatography on reverse phase C18 column and semi-preparative HPLC,and their structures were elucidated on the basis of HR-ESI-MS,1D NMR(1H-NMR,13C-NMR,and NOESY) and 2D NMR(1H-1H COSY,HSQC,and HMBC) spectral analyses.Results Aspergillus sp.could partially hydrolyze GL into GAMG(3),along with two minor byproducts,3-O-β-D-glucuronopyranosyl-18β-liquiritic acid(1) and 3-O-β-D-glucuronopyranosyl-24-hydroxy-18β-glycyrrhetinic acid(2).Conclusion Aspergillus sp.has the high selectivity of hydrolyzing GL into GAMG without GA byproduct and the yield of GAMG is about 60%.The complete assignments of 1H-NMR and 13C-NMR data for compounds 1 and 2 are reported for the first time.展开更多
Objective Muncl8-1 has an important role in neurotransmitter release, and controls every step in the exocy- totic pathway in the central nervous system. In the present study, whether epileptic seizure causes a change ...Objective Muncl8-1 has an important role in neurotransmitter release, and controls every step in the exocy- totic pathway in the central nervous system. In the present study, whether epileptic seizure causes a change of Muncl8 localization in neuronal nuclei was analyzed. Methods Epilepsy models were established by injection of kainic acid (KA) solution into hippocampus of Sprague-Dawley (SD) rats or intraperitoneal injection of KA in Kunming mice. The hippocampal neurons were prepared from embryonic day 18 SD rats, and cultured in neurobasal medium, followed by treatment with glutamate for 3 h. Neuronal and glial nuclei of hippocampus were separated by sucrose density gradient centrifugation. The nucleus-enriched fractions were stained with 0.1% Cresyl Violet for morphological assay. Immuno- chemistry and immunoelectron microscopy with anti-Muncl 8-1 antibody were used to determine the nuclear locatization of Munc 18-1. Immunoblotting was used to detect the protein level of Munc 18-1. Results The localization of Munc 18-1 in nucleus of rat hippocampal neuron was confirmed by immunochemistry, immunoelectron microscopy, and immunob- lotting detection of neuronal nucleus fraction. In animals receiving intrahippocampal or intraperitoneal injection of KA, immunostaining revealed that the expression of Muncl 8-1 decreased in pyramidal cell layer of CA regions, as well as in hilus and granular cell layer of dentate gyrus in hippocampus. Moreover, immunoblotting analysis showed that the expres- sion level of Muncl 8-1 in nucleus fraction of hippocampus significantly decreased in KA-treated animals. The relation- ship between the change of Muncl8-1 expression in neuronal nuclei and neuronal over-activation was also tested in pri- mary cultured neurons. After treatment with 50 ~tmol/L glutamate acid for 3 h, Muncl8-1 level was decreased in nucleus fraction and increased in cytoplasmic fraction of primary cultured neurons. Conclusion These results suggest that excit- atory stimulation can induce the distribution change of Munc 18-1 in neuron, which may subsequently modulate neuronal functions in brain.展开更多
文摘BACKGROUND End-stage liver disease is a global health complication with high prevalence and limited treatment options.Cell-based therapies using mesenchymal stem cells(MSCs)emerged as an alternative approach to support hepatic regeneration.In vitro preconditioning strategies have been employed to strengthen the regenerative and differentiation potential of MSCs towards hepatic lineage.Chemical compounds of the triterpene class;glycyrrhizic acid(GA)and 18β-glycyrrhetinic acid(GT)possess diverse therapeutic properties including hepatoprotection and anti-fibrosis characteristics.They are capable of modulating several signaling pathways that are crucial in hepatic regeneration.Preconditioning with hepato-protective triterpenes may stimulate MSC fate transition towards hepatocytes.AIM To explore the effect of GA and GT on hepatic differentiation of human umbilical cord-MSCs(hUC-MSCs).METHODS hUC-MSCs were isolated and characterized phenotypically by flow cytometry and immunocytochemistry for the expression of MSC-associated surface molecules.Isolated cells were treated with GA,GT,and their combination for 24 h and then analyzed at three time points;day 7,14,and 21.qRT-PCR was performed for the expression of hepatic genes.Expression of hepatic proteins was analyzed by immunocytochemistry at day 21.Periodic acid Schiff staining was performed to determine the functional ability of treated cells.RESULTS The fusiform-shaped morphology of MSCs in the treatment groups in comparison with the untreated control,eventually progressed towards the polygonal morphology of hepatocytes with the passage of time.The temporal transcriptional profile of preconditioned MSCs displayed significant expression of hepatic genes with increasing time of differentiation.Preconditioned cells showed positive expression of hepatocyte-specific proteins.The results were further corroborated by positive periodic acid Schiff staining,indicating the presence of glycogen in their cytoplasm.Moreover,bi-nucleated cells,which is the typical feature of hepatocytes,were also seen in the preconditioned cells.CONCLUSION Preconditioning with glycyrrhizic acid,18β-glycyrrhetinic acid and their combination,successfully differentiates hUC-MSCs into hepatic-like cells.These MSCs may serve as a better therapeutic option for degenerative liver diseases in future.
基金Supported by the Ningxia Natural Science Foundation,No.2022AAC03144.
文摘BACKGROUND Gastric cancer(GC)is a common gastrointestinal malignancy worldwide.Based on cancer-related mortality,the current prevention and treatment strategies for GC still show poor clinical results.Therefore,it is important to find effective drug treatment targets.AIM To explore the molecular mechanism of 18β-glycyrrhetinic acid(18β-GRA)regulating the miR-345-5p/TGM2 signaling pathway to inhibit the proliferation of GC cells.METHODS CCK-8 assay was used to determine the effect of 18β-GRA on the survival rate of GES-1 cells and AGS and HGC-27 cells.Cell cycle and apoptosis were detected by flow cytometry,cell migration was detected by a wound healing assay,the effect of 18β-GRA on subcutaneous tumor growth in BALB/c nude mice was investigated,and the cell autophagy level was determined by MDC staining.TMT proteomic analysis was used to detect the differentially expressed autophagy-related proteins in GC cells after 18β-GRA intervention,and then the protein-protein interaction was predicted using STRING(https://string-db.org/).MicroRNAs(miRNAs)transcriptome analysis was used to detect the miRNA differential expression profile,and use miRBase(https://www.mirbase/)and TargetScan(https://www.targetscan.org/)to predict the miRNA and complementary binding sites.Quantitative real-time polymerase chain reaction was used to detect the expression level of miRNA in 18β-GRA treated cells,and western blot was used to detect the expression of autophagy related proteins.Finally,the effect of miR-345-5p on GC cells was verified by mir-345-5p overexpression.RESULTS 18β-GRA could inhibit GC cells viability,promote cell apoptosis,block cell cycle,reduce cell wound healing ability,and inhibit the GC cells growth in vivo.MDC staining results showed that 18β-GRA could promote autophagy in GC cells.By TMT proteomic analysis and miRNAs transcriptome analysis,it was concluded that 18β-GRA could down-regulate TGM2 expression and up-regulate miR-345-5p expression in GC cells.Subsequently,we verified that TGM2 is the target of miR-345-5p,and that overexpression of miR-345-5p significantly inhibited the protein expression level of TGM2.Western blot showed that the expression of autophagy-related proteins of TGM2 and p62 was significantly reduced,and LC3II,ULK1 and AMPK expression was significantly increased in GC cells treated with 18β-GRA.Overexpression of miR-345-5p not only inhibited the expression of TGM2,but also inhibited the proliferation of GC cells by promoting cell apoptosis and arresting cell cycle.CONCLUSION 18β-GRA inhibits the proliferation of GC cells and promotes autophagy by regulating the miR-345-5p/TGM2 signaling pathway.
文摘Cisplatin (CP) , a highly effective and widely used chemotherapeutic agent, has a major limitation for its nephrotoxicity. We recently identified a novel strategy for attenuating its nephrotoxicity in chemotherapy by an ef- fective adjuvant via epigenetic modification through targeting Histone deacetylase 2 (HDAC2). Glycyrrhizic acid (GA) ,a major active component of Licorice, was described here for its new application. Molecular docking and Surface Plasmon resonance (SPR) assay firstly reported that 18βGA, GA metabolite in vivo, could directly bind to HDAC2 and prevent HDAC2 activation. The effects and mechanisms of GA and its major metabolite 18βGA were assessed in CP-induced acute kidney injury (AKI) in C57BL/6 mice, and in CP-treated HK-2 and mTEC cells lines. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and flow cytometry (FCM) results confirmed that GA and 18βGA could inhibit apoptosis of renal tubular epithelial cells induced by CP in vivo and in vitro. Western blot and immunofluorescence results demonstrated that the expression of bone morphogenetic protein- 7 (BMP-7) , a protective molecule in renal inflammation, was clearly induced by 18βGA in AKI models while siR- NA BMP-7 could reduce the inhibitory effect of 18βGA on apoptosis. Results of current study indicated that 18βGA inhibited apoptosis of renal tubular epithelial cells via enhancing level of BMP-7 epigenetically through targeting HDAC2, therefore protecting against CP-induced AKI. These available evidence, which led to an improved under- standing of molecular recognition, suggested that 18βGA could serve as a potential clinical adjuvant in chemothera-
基金Ningxia Medical University Project,No. XZ2021005Ningxia Natural Science Foundation,Nos. 2022AAC03144 and 2022AAC02039National Natural Science Foundation of China,No. 82260879
文摘BACKGROUND Gastric cancer(GC)is one of the most common cancer types worldwide,and its prevention and treatment methods have garnered much attention.As the active ingredient of licorice,18β-glycyrrhetinic acid(18β-GRA)has a variety of pharmacological effects.The aim of this study was to explore the effective target of 18β-GRA in the treatment of GC,in order to provide effective ideas for the clinical prevention and treatment of GC.AIM To investigate the mechanism of 18β-GRA in inhibiting cell proliferation and promoting autophagy flux in GC cells.METHODS Whole transcriptomic analyses were used to analyze and screen differentially expressed microRNAs(miRNAs)in GC cells after 18β-GRA intervention.Lentivirus-transfected GC cells and the Cell Counting Kit-8 were used to detect cell proliferation ability,cell colony formation ability was detected by the clone formation assay,and flow cytometry was used to detect the cell cycle and apoptosis.A nude mouse transplantation tumor model of GC cells was constructed to verify the effect of miR-328-3p overexpression on the tumorigenicity of GC cells.Tumor tissue morphology was observed by hematoxylin and eosin staining,and microtubule-associated protein light chain 3(LC3)expression was detected by immunohistochemistry.TransmiR,STRING,and miRWalk databases were used to predict the relationship between miR-328-3p and signal transducer and activator of transcription 3(STAT3)-related information.Expression of STAT3 mRNA and miR-328-3p was detected by quantitative polymerase chain reaction(qPCR)and the expression levels of STAT3,phosphorylated STAT3(p-STAT3),and LC3 were detected by western blot analysis.The targeted relationship between miR-328-3p and STAT3 was detected using the dual-luciferase reporter gene system.AGS cells were infected with monomeric red fluorescent protein-green fluorescent protein-LC3 adenovirus double label.LC3 was labeled and autophagy flow was observed under a confocal laser microscope.RESULTS The expression of miR-328-3p was significantly upregulated after 18β-GRA intervention in AGS cells(P=4.51E-06).Overexpression of miR-328-3p inhibited GC cell proliferation and colony formation ability,arrested the cell cycle in the G0/G1 phase,promoted cell apoptosis,and inhibited the growth of subcutaneous tumors in BALB/c nude mice(P<0.01).No obvious necrosis was observed in the tumor tissue in the negative control group(no drug intervention or lentivirus transfection)and vector group(the blank vector for lentivirus transfection),and more cells were loose and necrotic in the miR-328-3p group.Bioinformatics tools predicted that miR-328-3p has a targeting relationship with STAT3,and STAT3 was closely related to autophagy markers such as p62.After overexpressing miR-328-3p,the expression level of STAT3 mRNA was significantly decreased(P<0.01)and p-STAT3 was downregulated(P<0.05).The dual-luciferase reporter gene assay showed that the luciferase activity of miR-328-3p and STAT33’untranslated regions of the wild-type reporter vector group was significantly decreased(P<0.001).Overexpressed miR-328-3p combined with bafilomycin A1(Baf A1)was used to detect the expression of LC3 II.Compared with the vector group,the expression level of LC3 II in the overexpressed miR-328-3p group was downregulated(P<0.05),and compared with the Baf A1 group,the expression level of LC3 II in the overexpressed miR-328-3p+Baf A1 group was upregulated(P<0.01).The expression of LC3 II was detected after intervention of 18β-GRA in GC cells,and the results were consistent with the results of miR-328-3p overexpression(P<0.05).Additional studies showed that 18β-GRA promoted autophagy flow by promoting autophagosome synthesis(P<0.001).qPCR showed that the expression of STAT3 mRNA was downregulated after drug intervention(P<0.05).Western blot analysis showed that the expression levels of STAT3 and p-STAT3 were significantly downregulated after drug intervention(P<0.05).CONCLUSION 18β-GRA promotes the synthesis of autophagosomes and inhibits GC cell proliferation by regulating the miR-328-3p/STAT3 signaling pathway.
基金National Science & Technology Pillar Program (2011BAI07B02-5)
文摘Objective To search for the microorganisms which have the high selectivity of hydrolyzing glycyrrhizic acid(GL) into 18β-glycyrrhetinic acid-3-O-β-D-glucuronide(GAMG) without glycyrrhetinic acid(GA) byproduct.Methods GL was biotransformed by Aspergillus sp.,the products were separated by chromatography on reverse phase C18 column and semi-preparative HPLC,and their structures were elucidated on the basis of HR-ESI-MS,1D NMR(1H-NMR,13C-NMR,and NOESY) and 2D NMR(1H-1H COSY,HSQC,and HMBC) spectral analyses.Results Aspergillus sp.could partially hydrolyze GL into GAMG(3),along with two minor byproducts,3-O-β-D-glucuronopyranosyl-18β-liquiritic acid(1) and 3-O-β-D-glucuronopyranosyl-24-hydroxy-18β-glycyrrhetinic acid(2).Conclusion Aspergillus sp.has the high selectivity of hydrolyzing GL into GAMG without GA byproduct and the yield of GAMG is about 60%.The complete assignments of 1H-NMR and 13C-NMR data for compounds 1 and 2 are reported for the first time.
基金supported by grants from the National Natural Science Foundation of China (No. 81071017, 30470536, 90919004)
文摘Objective Muncl8-1 has an important role in neurotransmitter release, and controls every step in the exocy- totic pathway in the central nervous system. In the present study, whether epileptic seizure causes a change of Muncl8 localization in neuronal nuclei was analyzed. Methods Epilepsy models were established by injection of kainic acid (KA) solution into hippocampus of Sprague-Dawley (SD) rats or intraperitoneal injection of KA in Kunming mice. The hippocampal neurons were prepared from embryonic day 18 SD rats, and cultured in neurobasal medium, followed by treatment with glutamate for 3 h. Neuronal and glial nuclei of hippocampus were separated by sucrose density gradient centrifugation. The nucleus-enriched fractions were stained with 0.1% Cresyl Violet for morphological assay. Immuno- chemistry and immunoelectron microscopy with anti-Muncl 8-1 antibody were used to determine the nuclear locatization of Munc 18-1. Immunoblotting was used to detect the protein level of Munc 18-1. Results The localization of Munc 18-1 in nucleus of rat hippocampal neuron was confirmed by immunochemistry, immunoelectron microscopy, and immunob- lotting detection of neuronal nucleus fraction. In animals receiving intrahippocampal or intraperitoneal injection of KA, immunostaining revealed that the expression of Muncl 8-1 decreased in pyramidal cell layer of CA regions, as well as in hilus and granular cell layer of dentate gyrus in hippocampus. Moreover, immunoblotting analysis showed that the expres- sion level of Muncl 8-1 in nucleus fraction of hippocampus significantly decreased in KA-treated animals. The relation- ship between the change of Muncl8-1 expression in neuronal nuclei and neuronal over-activation was also tested in pri- mary cultured neurons. After treatment with 50 ~tmol/L glutamate acid for 3 h, Muncl8-1 level was decreased in nucleus fraction and increased in cytoplasmic fraction of primary cultured neurons. Conclusion These results suggest that excit- atory stimulation can induce the distribution change of Munc 18-1 in neuron, which may subsequently modulate neuronal functions in brain.