BACKGROUND Gastric cancer(GC)is a common gastrointestinal malignancy worldwide.Based on cancer-related mortality,the current prevention and treatment strategies for GC still show poor clinical results.Therefore,it is ...BACKGROUND Gastric cancer(GC)is a common gastrointestinal malignancy worldwide.Based on cancer-related mortality,the current prevention and treatment strategies for GC still show poor clinical results.Therefore,it is important to find effective drug treatment targets.AIM To explore the molecular mechanism of 18β-glycyrrhetinic acid(18β-GRA)regulating the miR-345-5p/TGM2 signaling pathway to inhibit the proliferation of GC cells.METHODS CCK-8 assay was used to determine the effect of 18β-GRA on the survival rate of GES-1 cells and AGS and HGC-27 cells.Cell cycle and apoptosis were detected by flow cytometry,cell migration was detected by a wound healing assay,the effect of 18β-GRA on subcutaneous tumor growth in BALB/c nude mice was investigated,and the cell autophagy level was determined by MDC staining.TMT proteomic analysis was used to detect the differentially expressed autophagy-related proteins in GC cells after 18β-GRA intervention,and then the protein-protein interaction was predicted using STRING(https://string-db.org/).MicroRNAs(miRNAs)transcriptome analysis was used to detect the miRNA differential expression profile,and use miRBase(https://www.mirbase/)and TargetScan(https://www.targetscan.org/)to predict the miRNA and complementary binding sites.Quantitative real-time polymerase chain reaction was used to detect the expression level of miRNA in 18β-GRA treated cells,and western blot was used to detect the expression of autophagy related proteins.Finally,the effect of miR-345-5p on GC cells was verified by mir-345-5p overexpression.RESULTS 18β-GRA could inhibit GC cells viability,promote cell apoptosis,block cell cycle,reduce cell wound healing ability,and inhibit the GC cells growth in vivo.MDC staining results showed that 18β-GRA could promote autophagy in GC cells.By TMT proteomic analysis and miRNAs transcriptome analysis,it was concluded that 18β-GRA could down-regulate TGM2 expression and up-regulate miR-345-5p expression in GC cells.Subsequently,we verified that TGM2 is the target of miR-345-5p,and that overexpression of miR-345-5p significantly inhibited the protein expression level of TGM2.Western blot showed that the expression of autophagy-related proteins of TGM2 and p62 was significantly reduced,and LC3II,ULK1 and AMPK expression was significantly increased in GC cells treated with 18β-GRA.Overexpression of miR-345-5p not only inhibited the expression of TGM2,but also inhibited the proliferation of GC cells by promoting cell apoptosis and arresting cell cycle.CONCLUSION 18β-GRA inhibits the proliferation of GC cells and promotes autophagy by regulating the miR-345-5p/TGM2 signaling pathway.展开更多
以双管法合成2-^(18)F-2-脱氧-β-D-葡萄糖(^(18)F-FDG)为例,系统分析了影响^(18)F-FDG合成效率的各因素。结果表明,合成体系中的含水量是影响^(18)F-FDG合成效率的主要因素;不纯的回收H_2^(18)O也是合成效率下降的原因之一;前体的用量...以双管法合成2-^(18)F-2-脱氧-β-D-葡萄糖(^(18)F-FDG)为例,系统分析了影响^(18)F-FDG合成效率的各因素。结果表明,合成体系中的含水量是影响^(18)F-FDG合成效率的主要因素;不纯的回收H_2^(18)O也是合成效率下降的原因之一;前体的用量不低于15mg即可满足要求,缩短合成时间有利于提高合成的效率(End of Synthe-sis,EOS)。通过降低体系中水的含量,合成时间从55min缩短到44min,校正效率(End of Bombardment,EOB)从50%提高到65%。展开更多
基金Supported by the Ningxia Natural Science Foundation,No.2022AAC03144.
文摘BACKGROUND Gastric cancer(GC)is a common gastrointestinal malignancy worldwide.Based on cancer-related mortality,the current prevention and treatment strategies for GC still show poor clinical results.Therefore,it is important to find effective drug treatment targets.AIM To explore the molecular mechanism of 18β-glycyrrhetinic acid(18β-GRA)regulating the miR-345-5p/TGM2 signaling pathway to inhibit the proliferation of GC cells.METHODS CCK-8 assay was used to determine the effect of 18β-GRA on the survival rate of GES-1 cells and AGS and HGC-27 cells.Cell cycle and apoptosis were detected by flow cytometry,cell migration was detected by a wound healing assay,the effect of 18β-GRA on subcutaneous tumor growth in BALB/c nude mice was investigated,and the cell autophagy level was determined by MDC staining.TMT proteomic analysis was used to detect the differentially expressed autophagy-related proteins in GC cells after 18β-GRA intervention,and then the protein-protein interaction was predicted using STRING(https://string-db.org/).MicroRNAs(miRNAs)transcriptome analysis was used to detect the miRNA differential expression profile,and use miRBase(https://www.mirbase/)and TargetScan(https://www.targetscan.org/)to predict the miRNA and complementary binding sites.Quantitative real-time polymerase chain reaction was used to detect the expression level of miRNA in 18β-GRA treated cells,and western blot was used to detect the expression of autophagy related proteins.Finally,the effect of miR-345-5p on GC cells was verified by mir-345-5p overexpression.RESULTS 18β-GRA could inhibit GC cells viability,promote cell apoptosis,block cell cycle,reduce cell wound healing ability,and inhibit the GC cells growth in vivo.MDC staining results showed that 18β-GRA could promote autophagy in GC cells.By TMT proteomic analysis and miRNAs transcriptome analysis,it was concluded that 18β-GRA could down-regulate TGM2 expression and up-regulate miR-345-5p expression in GC cells.Subsequently,we verified that TGM2 is the target of miR-345-5p,and that overexpression of miR-345-5p significantly inhibited the protein expression level of TGM2.Western blot showed that the expression of autophagy-related proteins of TGM2 and p62 was significantly reduced,and LC3II,ULK1 and AMPK expression was significantly increased in GC cells treated with 18β-GRA.Overexpression of miR-345-5p not only inhibited the expression of TGM2,but also inhibited the proliferation of GC cells by promoting cell apoptosis and arresting cell cycle.CONCLUSION 18β-GRA inhibits the proliferation of GC cells and promotes autophagy by regulating the miR-345-5p/TGM2 signaling pathway.
文摘以双管法合成2-^(18)F-2-脱氧-β-D-葡萄糖(^(18)F-FDG)为例,系统分析了影响^(18)F-FDG合成效率的各因素。结果表明,合成体系中的含水量是影响^(18)F-FDG合成效率的主要因素;不纯的回收H_2^(18)O也是合成效率下降的原因之一;前体的用量不低于15mg即可满足要求,缩短合成时间有利于提高合成的效率(End of Synthe-sis,EOS)。通过降低体系中水的含量,合成时间从55min缩短到44min,校正效率(End of Bombardment,EOB)从50%提高到65%。